MS Bridges: Welcome to Mr. Eves!

Joining us this year at Providence is the highly qualified Mr. Matt Eves. A long-time friend of Mr. Meadth, Mr. Eves brings his experiences in engineering and business to the AP Calculus AB class with our seniors, and the Intro to Engineering class with the middle schoolers.

Mr. Eves wasted no time in getting down to one of our famous projects: The Bridge! In teams of two, with a list of required constraints, they set about building the longest possible bridge. This is more than just messing around with LEGO; students were demonstrating that they had learned the underlying structural principles of triangular trusses and bending beams.

Josue and Larry measure their jointed creation

Jeffry, one of the able teacher assistants, helps Paul and Ryken

Elizabeth, Carmen, Nate, and Abigail take a moment to smile!

Taylor and Will understood the need for vertical triangles…
is there anything they were still missing?

Tess and Bryce carefully counting the pieces they used

Jonny, another of our teacher assistants, helping Hunter and Reggie

(By the way, if you’re wondering about the teacher assistants: Jonny, Jeffry, Emma, and Ruby are all acting in this capacity this semester. Having taken this class once already, they are now bringing their learning to another level by helping the other students. There is no better way to learn than by teaching! They have also been taking time out with Mr. Meadth during class to learn CAD tools, with some of their creations being 3D printed.)

Upon completion, the seven teams laid wooden tracks across their bridges and put them to the test. All teams performed incredibly well, with almost no flexing evident. The following video shows the tests–in each one, what elements of design do you see that are contributing to the bridge’s strength?

A great start to the year! Next step: learning about gears and torque. Students will combine these lessons with their knowledge of structural strength to build a special machine… can you guess what it is? All this, so we can learn to build a robot that moves properly and is mechanically strong.

Browse around and check out some of our other recent posts. Feel free to email Mr. Meadth or Mr. Eves for any questions about the Providence engineering programs, and share this post freely with family and friends!

Guessing Games and Plywood Furniture

The first couple of weeks are already under our belt, and we are off to a good start in the Providence Engineering Academy! This year, we have ten determined engineers-in-training in the older group, and thirteen in the younger. The older group will spend the year studying statics—the science of things that don’t move—and the younger will be learning the ins and outs of both robotics and mathematics.

Both groups started off the year with a simple exercise to test their divergent and convergent thinking skills. Mr. Meadth had a 3D-printed model of an well-known mechanical device hidden in a box, broken down into its twelve constituent pieces. The device was unnamed, but the students were assured that they were very familiar with it, and that there were several such devices in the room all around. He brought out the pieces one by one, and after each new piece was revealed, the students set about guessing what the device could be.
Congratulations to Pedro and Alena! (And also to Claire, who learned not to second guess herself!) After only four of the twelve pieces were revealed, they correctly guessed the identity of the complete device. Sound easy? Here’s the four pieces they had in front of them when they guessed correctly. Don’t scroll down too far unless you want the answer!
Each of these little red prisms are about half an inch tall in actual size
What could the entire device be?
Give up yet?
Scroll down…
If you guessed that the complete device was a lock and key, well done!
The four prisms are on top, called the driver pins
There’s even more going on inside!

In their respective classes, Alena’s and Pedro’s prize was to build the device up from its twelve pieces, without any help from the teacher. With cheering and suggestions from their peers, Alena and Pedro were successfully able to get it all together in time!
Alena fits the pieces together in the new Room 102
There’s plenty more going on since then. To get warmed up in their “study of things that don’t move”, the Advanced Engineering I group is working in three competitive teams to produce a new piece of classroom furniture for Room 102. All three teams settled for variations of plywood lecterns (not podiums—sorry if you’ve been misusing this word). We look forward to seeing what emerges over the next couple of weeks.
Colby, Gabe, and Todd work together on their piece of modern art;
the purchased plywood patiently awaits!
Stay posted for updates on the furniture, and to find out just what it means to study robotics in the high school program. (Hint: we aren’t fooling around with LEGO anymore!)

Gliders Launched!

There was a mixture of feelings in the Advanced Engineering II class last week, as they put the finishing touches on their gliders. These thirteen students had conceived, planned, and brought forth finely-tuned creations over the past nine months. The thought of now—literally—throwing them to the wind was somewhat concerning, to say the least.

Aaron throws his team’s glider from the roof to the field

Aaron, Caleb, and Megan had worked on a design with the shortest length from nose to tail, which resulted in the lowest weight of all four teams: 281 grams (a bit more than half a pound). They pulled cellophane over 3D printed ribs to create an aerodynamic lifting wing, and they opted for a balsa tail and body, connected by two carbon-fiber rods. Their team was also the only one to decide against undercarriage, relying instead on the rounded fuselage itself to land safely on the grassy field.

In total, this smooth sailplane made about four throws, with some repairs along the way! Sporting flashy silver and gold control surfaces, they reached a maximum distance of 68 ft. It also bears mentioning that the cumulative report with the conceptual and detailed design, plus appendices, came out to a whopping 23 pages. Well done!

Megan, Aaron, and Caleb standing proudly

Kylie, Luke, and Josh had the great honor of building the largest plane, dubbed by some The Spruce Goose. Click here for some serious aviation history behind that name! With a wingspan of 100 cm, a chord length of 22 cm, and a total nose to tail length of over 80 cm, it took to the air for an historic maiden voyage, with Luke at the helm.
Unfortunately, things did not fare so well for this 502 gram glider (a little more than 1 lb), which only made it 17 ft out into the field. Mr Meadth also tried his hand at throwing this one, but this was hampered by some sticky undercarriage. The good news is that the egg onboard was well protected!
Kylie proudly holds the Goose aloft

Luke, showing some signs of stress before the big throw

Left to right: Colby, Mikaela, Tys, Victor, Luke, Kylie, and Josh
Next in line was the Banana Grinder, so named in honor of some typographical errors early on in the design process. Tys, Mikaela, Victor, and Colby also chose to pull cellophane over printed ribs, but decided to rely heavily on the CAD skills of Tys and Colby to construct many other components of the aircraft, resulting in a high construction precision.
Colby and Tys did great work on matching the CAD model
to the real thing

The team worked powerfully together to build a sleek-looking machine. Others commented on the slender, low profile, the extensive use of carbon-fiber rods in wings, tail, and body, and Mikaela’s cover page artwork! The Grinder’s best launch took it an impressive 60 feet.

Colby waits for the wind to pass before making the throw

Our final team boasted several different features not seen on any other glider. Blue Wonder was the only glider to have a dihedral angle (where the wings slope upwards), it was the only one with a T-tail instead of conventional, and it had the longest wingspan of 120 cm, resulting in the highest aspect ratio. Aspect ratio is a comparison of the wingspan to the wing chord. The students had been taught in class that a high aspect ratio would lower the induced drag. Other teams had aspect ratios around the 4 to 8 mark; Blue Wonder was 12.6.

Eva, Gabe, and Claire also made extensive use of 3D printing and carbon fiber, much like Banana Grinder. Finally, they chose to skin the wing with tissue paper soaked in dope (a kind of glue that dries hard and pulls the paper tight). This resulted in a smoother, tougher lifting surface compared to the cellophane. Click here for the CAD model of their components.
The completed 120 cm wing and T-tail (not yet skinned), connected
by a carbon-fiber rod
It is an unfortunate fact of history that the maiden voyage of this aerial acrobat was a complete disaster. After several successful short-range tests, Gabe hurled the machine into the air… only to have it bank around to port and crash violently into a row of bleachers! With a total distance of only 4 ft and a broken tail, Claire brought out the masking tape to get it ready for another flight.

Gabe hefting the Blue Wonder down on the ground

A second throw left the crowd speechless, as the Wonder curved gracefully into the breeze. After gaining a dozen feet of altitude, it swooped down across the field, showing none of its port-side tendencies, and landed smoothly at 97 ft! Gabe and Mr. Meadth were both able to make a few more flights just as successfully before a few rough landings left it crippled and grounded like the others.
At the close of the experiments, Victor commented that he would never look at an aircraft the same way again; he now sees the c.g. and the balance and all of the work that went into it. And needless to say, Eva and Gabe and Claire were glowing with pride.
So—what was learned?

  1. It is better to have high accuracy construction, which 3D printing perfectly lends itself to.
  2. A dihedral wing angle really does promote roll stability.
  3. The planes’ distances were directly linked to their wing aspect ratios (how slender they were).
  4.  Lighter planes flew further and better.
  5. The doped tissue paper seemed to lower the drag compared to the cellophane.
  6. Carbon fiber really is as awesome as it sounds.
With only a few weeks of school left, the students are now turning their attention to a special project, funded by a grant awarded by the EnergyPartners Fund. Broken out into five new teams, they are assembling electronic components for a quadcopter drone. They will design and 3D print the body of the drone, holding all the pieces together. More to come!

Gliders: In Production!

A quick update on our Advanced Engineering II glider project: the students are currently hard at work translating their theoretical calculations into hand-made reality. The problem is at first daunting; how do you create the various parts of a flying machine, according to a specific design? There are dozens of materials that might be chosen for each component, and the production needs to be accurate enough and cheap enough and quick enough and repeatable enough!

Aaron lines his twenty ribs carefully
in place, ready to glue

All teams have settled on a 3D-printed rib-and-spar design for the wings, although the exact rib profile varies in size and shape. All teams are using carbon fiber square tubes for the spars (the long beams that run through from wing tip to wing tip). Some teams are planning on skinning their wing with cellophane, and others are planning on tissue paper and dope (a kind of glue that tightens and hardens the paper).

Kylie and Josh and Luke are producing
the largest, thickest ribs of all teams
(sounds delicious, in fact)

To see some interactive CAD models that Tys and Mikaela and Colby and Victor are working on, click here.

Other components, such as the undercarriage and fuselage and tail, are being made from 3D-printed parts, balsa sheets, more carbon fiber, and even colorful pipe cleaners.

Victor, Colby, and Mikaela go over the particulars of their CAD
model with Dr. Nathan Gates, retired aerospace engineer

Megan and Caleb receive valuable
advice from our classroom mentor

To help with the design process, we asked retired aerospace engineer Dr. Nathan Gates to visit our classroom. Dr. Gates moved around the different teams to consult with them. Each team explained their design, and received valuable feedback as to their construction plans. Dr. Gates’ area of expertise was structural mechanics; he was doubtlessly overqualified for this role!

Proud Providence alumna Willow looks over Gabe’s and Eva’s
wing design

To further sweeten the deal, we also asked Willow Brown, Providence alumna (2015), to come by on the same day. Willow’s sister, Kylie, is on a team with Luke and Josh. Willow is currently studying mechanical engineering at Loyola Marymount University. Did this give Kylie and her team an unfair advantage? Only time will tell.

The maiden voyage is fast approaching, so watch this space. There’s more coming up later this year, too—students will design, print, and build quadcopter drones. Stay posted, and thank you to Dr. Gates and Willow!

Educational Design Project

In the Providence Engineering Academy, we emphasize the idea that technology ought never to be an end in itself. Technology for technology’s sake rings hollow, and as Christians we ought to see all things as being good and useful for God’s kingdom purposes. A very real question for us is this: how can we use engineering, design, and technology to love others? As engineers, are we perhaps able to serve others in ways that others cannot?

In answer to this question, the 9th/10th Grade Foundations of Engineering I class asked for and received requests from our school’s own teachers and staff. We asked them what they could use in their classrooms and offices that we could design and then 3D print. In the past, the students have produced models of ziggurats, pyramids, and Solomon’s temple. They have made gear ratio demonstrations, ten-sided dice, and computer monitor stands.
This year, the entries were just as exciting. We start with several geometric demonstrations for Mrs. Smelley, our 7th and 8th Grade mathematics teacher, designed by Ava and Peter. Ava created some simple trapezoid area demonstrations, as well as a cubic volume demonstration. Peter built a folding box that opens up to show how a 2D net is created from a 3D shape. Mrs. Smelley was delighted, telling the students “you have really supplied the tools for our class.”
Mrs. Smelley gratefully receives the cubic volume project from Ava 
Peter’s folding box design: click here to view the online version

Next up was Sam, with his large model of a cell for Mr. Alker’s middle school biology class. Sam created each piece as separate, so students can pull it apart, and really “feel” what they have seen in the textbook.
Sam looks on as Mr. Alker identifies the various bits and pieces

Todd produced a somewhat unique request: an anti-theft device! Mr. Hurt finds that his classroom calculators tend to go “missing”, and so he is embarking on a social experiment. Will fastening a distinctive 3D printed science-themed design to the back of them change the outcome? Only time will tell. At the very least we appreciate this practical use of the scientific method.
Todd’s design features a striking gold-on-black circuit board pattern
Next in line is Caleb, who designed something along more structural lines: a replacement door handle for a cabinet in our science and engineering lab. This project was a good lesson in meeting external constraints; it had to be strong enough, match up with the existing screw holes, and allow for screws to actually take hold of it. Caleb also added some extra pizzazz.
The new door handle, with Providence logo, in place and ready to go!

Madison designed some calendar labels for Mrs. Penton, enabling her to easily highlight different events as the year rolls by. The labels are removable and have pre-printed words on them for common activities and events.
Mrs. Penton shows off her new designs!

Ben also went the structural route by creating some shelving brackets for Mr. Meadth. Why go store-bought when you can have custom-made? Mr. Meadth greatly appreciated Ben’s creativity, as he created dozens of “bubbles” and carefully placed holes to match up with the existing bolt locations.
Ben’s brackets support a display shelf for the Calculus class

Pedro helped complete a design that was begun last year by 11th and 12th Graders. The idea was to build a column compression demonstration, showing how compressed columns form a variety of buckling modes, depending on end fixity conditions. Pedro adroitly designed a sliding attachment, which keeps the end of the column from rotating while allowing one-dimensional translation. This will see use next year in classes!
The column testing device is finally
complete, thanks to Pedro

Alena chose to work on the Engineering Academy keychains for next year. We have a tradition of producing simple keychains for everyone in both classes, and Alena is working on something that echoes next year’s themes of robotics and structural engineering.

A miniature wrench, courtesy of Alena

And finally, Josh designed a caddy for Ms. Svoboda in middle school. Ms. Svoboda teaches between different classrooms, and this caddy allows her to quickly bring some essential items for her afternoon class. In this case, Josh worked to supplement an existing file holder with customized attachments. Ms. Svoboda was delighted with the results!
Have caddy, will travel!

As a final word, Mr. Meadth and Claire (our 11th Grade T.A.) also worked to produce some pieces for the Providence Preschool. Our new director, Cheri Diaz, wanted some “natural” items, so we printed a starfish, a seashell, a honeycomb, and some ice cubes (all but the ice cubes were found online on Thingiverse). We hope the children enjoy playing with them!

Field Trip: Santa Barbara Forge + Iron

Not far from our Upper Campus is an exciting center of creativity and design. With ties to Westmont College, Providence, and our own Mr Hurt, it’s the most natural place in the world to take our engineering students for inspiration…

Santa Barbara Forge + Iron!

Led by Dan and Andy Patterson, the people at Forge + Iron design, hammer, cut, and sculpt all manner of metal creations. You can see their work around town, most recently in the lighting fixtures at MOXI on Lower State Street.

Dan shows the ten students a piece of heavy machinery, designed
to cut through the thickest pieces of steel without blinking–no
touching allowed!

Over the din of hammers and ventilation fans, the students saw some fascinating works in progress. We found a good case study, too, where Dan had begun his designs in the CAD program SketchUp. While the students so far this year have been using a solid-based cloud CAD program called Onshape, they will be switching to SketchUp for the second semester. Creating the three-dimensional model up front allowed Dan to visualize the product, express his ideas to others, and spot potential challenges. Moreover, he was able to export particular decorative geometry from the design, and upload it to their plasma cutter to get just the right shape from the beginning.
The students look on as Dan moves the plasma cutter through its
three degrees of freedom

Computer models and computer-controlled cutting are then combined with the artistry and experience of the master; the team hammers and weathers the precision-cut piece to give it more character.
Students pass by as Andy gives attention to an iron archway,
destined for an existing window frame in Santa Barbara

The brothers’ passion for excellence in creativity came through loud and clear. Since our own students are wrapping up their Educational Design Project, where they meet with a client and work with them to develop a satisfactory 3D-printed product, the example of what this looks like in the professional world was well timed.
May we ever be inspired! Thanks to the brothers Patterson for their warm welcome, and to Mr. Rockney for coming along as an extra chaperone.