MS Science & Engineering Expo 2018

The annual Middle School Science & Engineering Expo was a huge success once again, thanks to the hard work and positive attitudes of so many students, parents, teachers, and staff. This year’s theme of The Human Machine inspired a range of hands-on explorations, from Masa and Cameron’s tennis and baseball clinic, to Heidi and Ella’s eye dissection, to robotic prosthetic hands built by the Intro to Engineering class.

Harry, Ruby, Isabela, and James show off their robotic hands

Elementary students get in on the action!

Masa shows Mr. Sunukjian how it’s done!

Mr. Alker worked hard with every 8th Grade student over a period of several weeks to hone their demonstrations to perfection. With such a rich inspiration as the human body itself, students were well able to explore athletics, biology, physics, and engineering.
Never too young to begin!  Providence class of  2033?

Mr. Alker explains the human lung to a captive audience

Maya walks her family through the inner workings of
the human digestive system

Zach, Isaiah, and Sam with their lung test apparatus

Mr. Meadth also brought some high school engineering students to show off their recently completed gliders. High school 3D printers were running hot all the while, courtesy of Todd and Alena, producing Providence keychains for our guests.
Mr. Hurt, high school science teacher, measures his heart rate
alongside Ava

Heidi and Ella showing the inner workings of a cow’s eyeball,
much to the delight of visiting parents

Todd and Alena busily keeping those
printers running on behalf of the high
school Engineering Academy

With sweet treats provided by parent volunteers (thank you!) and Mrs. Luy welcoming guests at the gate, there were plenty of smiles all around. Good things are happening at Providence! For more information about middle school science, please contact Mr. Alker. For more information on our engineering programs, please contact Mr. Meadth. Don’t forget to check out the other articles on this blog, and subscribe for automatic updates.
Ella helps two elementary students fill out their scavenger hunt

Abby and Liza calculated the energy delivered in tasty snacks

Lily taught how music affects heart rate

Gliders: In Production!

A quick update on our Advanced Engineering II glider project: the students are currently hard at work translating their theoretical calculations into hand-made reality. The problem is at first daunting; how do you create the various parts of a flying machine, according to a specific design? There are dozens of materials that might be chosen for each component, and the production needs to be accurate enough and cheap enough and quick enough and repeatable enough!

Aaron lines his twenty ribs carefully
in place, ready to glue

All teams have settled on a 3D-printed rib-and-spar design for the wings, although the exact rib profile varies in size and shape. All teams are using carbon fiber square tubes for the spars (the long beams that run through from wing tip to wing tip). Some teams are planning on skinning their wing with cellophane, and others are planning on tissue paper and dope (a kind of glue that tightens and hardens the paper).

Kylie and Josh and Luke are producing
the largest, thickest ribs of all teams
(sounds delicious, in fact)

To see some interactive CAD models that Tys and Mikaela and Colby and Victor are working on, click here.

Other components, such as the undercarriage and fuselage and tail, are being made from 3D-printed parts, balsa sheets, more carbon fiber, and even colorful pipe cleaners.

Victor, Colby, and Mikaela go over the particulars of their CAD
model with Dr. Nathan Gates, retired aerospace engineer

Megan and Caleb receive valuable
advice from our classroom mentor

To help with the design process, we asked retired aerospace engineer Dr. Nathan Gates to visit our classroom. Dr. Gates moved around the different teams to consult with them. Each team explained their design, and received valuable feedback as to their construction plans. Dr. Gates’ area of expertise was structural mechanics; he was doubtlessly overqualified for this role!

Proud Providence alumna Willow looks over Gabe’s and Eva’s
wing design

To further sweeten the deal, we also asked Willow Brown, Providence alumna (2015), to come by on the same day. Willow’s sister, Kylie, is on a team with Luke and Josh. Willow is currently studying mechanical engineering at Loyola Marymount University. Did this give Kylie and her team an unfair advantage? Only time will tell.

The maiden voyage is fast approaching, so watch this space. There’s more coming up later this year, too—students will design, print, and build quadcopter drones. Stay posted, and thank you to Dr. Gates and Willow!

In the Steps of Orville and Wilbur

The Advanced Engineering II group has a unique and challenging task in front of them. In fact, it is quite possible that none of the students has ever undertaken something quite like this: a group project that lasts from September to March—designing and building a model glider!

The students have been hard at work learning the fundamentals of aerodynamics, as applied to conventional aircraft. They understand Bernoulli’s principle, the momentum shift theory of lift, what induced drag is, and why most modern aircraft have those little turned-up ends on their wings. They know the value of the theoretical lift curve slope, and how much lift an uncambered airfoil produces at a zero angle of attack, and they can check it all in a virtual wind tunnel test! Impressed yet?!

Luke (11th) and Kylie (12th) consult their extensive course notes
as they work on the detailed design spreadsheet

Divided up into four teams, the students have just put the finishing touches on their complex design spreadsheet, which describes in precise detail the various features of the glider they are going to build. Each glider will be thrown from the top of the science lab building onto our field, carrying a single (unboiled!) egg to safety as far downfield as possible. The plane that successfully flies the farthest and lands safely wins!

Tys (12th), Victor (11th), Colby (11th), and Mikaela (12th) happily
nearing the end of their design calculations after several weeks

The students will be using a variety of materials and techniques; we are currently amassing a stockpile of carbon fiber tubes, balsa wood pieces, tissue paper, cellophane, lead weights, aluminum wire, and other bits and pieces. The teams are creating CAD models of their wing cross-sections, intending to 3D print them in the coming weeks. Most of the gliders are about three feet across the wingspan, about two feet long, and weigh a bit more than half a pound. (By the way, all of our work is done in metric units, to be in keeping with international physics standards!)

In order to get a real hands-on feel for the work, the group also took a special visit up to the Santa Ynez Airport, where they were shown a variety of gliders and powered aircraft. This was the perfect chance to connect theory to practice, and it no doubt helped inspire the students as they move into the manufacturing phase.

Josh and Gabe look at the cockpit
of an older glider

Dave and Colby, employees of the airport, graciously showed us around the couple of dozen light aircraft sitting on the runway, answering student questions about wing design, gliding techniques, and the pilot license process.

Megan and Caleb dreaming big as they stand by another one of
the gliders
The students look on as Colby describes the sleek and elegant
Cirrus light aircraft


As more airplanes took off and landed around them, the students got up close views of a shiny Cirrus, many older Cessnas, and an unusual-looking Long-EZ. Colby described to us the great thrill of flying, being in perfect solitude up in the sky; he is working towards his powered pilot license.

Is it a spaceship of some sort? The Long-EZ design is not
recommended for the students to imitate for their glider design

The class’s six seniors from left to right: Tys, Mikaela, Caleb, Megan,
Aaron, and Kylie; our guide Colby on the right
With plenty to fill their heads about glide paths, turbulent flow, night navigation, wing construction, parachutes, and fuel pods, the students took one final pose on an aircraft they were allowed to sit in! Thanks very much to Dave and Colby and all of the crew up at Santa Ynez—perhaps we’ll see you again sometime soon! Airport Day is coming up on Saturday, May 20th, and all are welcome.

Educational Design Project

In the Providence Engineering Academy, we emphasize the idea that technology ought never to be an end in itself. Technology for technology’s sake rings hollow, and as Christians we ought to see all things as being good and useful for God’s kingdom purposes. A very real question for us is this: how can we use engineering, design, and technology to love others? As engineers, are we perhaps able to serve others in ways that others cannot?

In answer to this question, the 9th/10th Grade Foundations of Engineering I class asked for and received requests from our school’s own teachers and staff. We asked them what they could use in their classrooms and offices that we could design and then 3D print. In the past, the students have produced models of ziggurats, pyramids, and Solomon’s temple. They have made gear ratio demonstrations, ten-sided dice, and computer monitor stands.
This year, the entries were just as exciting. We start with several geometric demonstrations for Mrs. Smelley, our 7th and 8th Grade mathematics teacher, designed by Ava and Peter. Ava created some simple trapezoid area demonstrations, as well as a cubic volume demonstration. Peter built a folding box that opens up to show how a 2D net is created from a 3D shape. Mrs. Smelley was delighted, telling the students “you have really supplied the tools for our class.”
Mrs. Smelley gratefully receives the cubic volume project from Ava 
Peter’s folding box design: click here to view the online version

Next up was Sam, with his large model of a cell for Mr. Alker’s middle school biology class. Sam created each piece as separate, so students can pull it apart, and really “feel” what they have seen in the textbook.
Sam looks on as Mr. Alker identifies the various bits and pieces

Todd produced a somewhat unique request: an anti-theft device! Mr. Hurt finds that his classroom calculators tend to go “missing”, and so he is embarking on a social experiment. Will fastening a distinctive 3D printed science-themed design to the back of them change the outcome? Only time will tell. At the very least we appreciate this practical use of the scientific method.
Todd’s design features a striking gold-on-black circuit board pattern
Next in line is Caleb, who designed something along more structural lines: a replacement door handle for a cabinet in our science and engineering lab. This project was a good lesson in meeting external constraints; it had to be strong enough, match up with the existing screw holes, and allow for screws to actually take hold of it. Caleb also added some extra pizzazz.
The new door handle, with Providence logo, in place and ready to go!

Madison designed some calendar labels for Mrs. Penton, enabling her to easily highlight different events as the year rolls by. The labels are removable and have pre-printed words on them for common activities and events.
Mrs. Penton shows off her new designs!

Ben also went the structural route by creating some shelving brackets for Mr. Meadth. Why go store-bought when you can have custom-made? Mr. Meadth greatly appreciated Ben’s creativity, as he created dozens of “bubbles” and carefully placed holes to match up with the existing bolt locations.
Ben’s brackets support a display shelf for the Calculus class

Pedro helped complete a design that was begun last year by 11th and 12th Graders. The idea was to build a column compression demonstration, showing how compressed columns form a variety of buckling modes, depending on end fixity conditions. Pedro adroitly designed a sliding attachment, which keeps the end of the column from rotating while allowing one-dimensional translation. This will see use next year in classes!
The column testing device is finally
complete, thanks to Pedro

Alena chose to work on the Engineering Academy keychains for next year. We have a tradition of producing simple keychains for everyone in both classes, and Alena is working on something that echoes next year’s themes of robotics and structural engineering.

A miniature wrench, courtesy of Alena

And finally, Josh designed a caddy for Ms. Svoboda in middle school. Ms. Svoboda teaches between different classrooms, and this caddy allows her to quickly bring some essential items for her afternoon class. In this case, Josh worked to supplement an existing file holder with customized attachments. Ms. Svoboda was delighted with the results!
Have caddy, will travel!

As a final word, Mr. Meadth and Claire (our 11th Grade T.A.) also worked to produce some pieces for the Providence Preschool. Our new director, Cheri Diaz, wanted some “natural” items, so we printed a starfish, a seashell, a honeycomb, and some ice cubes (all but the ice cubes were found online on Thingiverse). We hope the children enjoy playing with them!

Field Trip: Santa Barbara Forge + Iron

Not far from our Upper Campus is an exciting center of creativity and design. With ties to Westmont College, Providence, and our own Mr Hurt, it’s the most natural place in the world to take our engineering students for inspiration…

Santa Barbara Forge + Iron!

Led by Dan and Andy Patterson, the people at Forge + Iron design, hammer, cut, and sculpt all manner of metal creations. You can see their work around town, most recently in the lighting fixtures at MOXI on Lower State Street.

Dan shows the ten students a piece of heavy machinery, designed
to cut through the thickest pieces of steel without blinking–no
touching allowed!

Over the din of hammers and ventilation fans, the students saw some fascinating works in progress. We found a good case study, too, where Dan had begun his designs in the CAD program SketchUp. While the students so far this year have been using a solid-based cloud CAD program called Onshape, they will be switching to SketchUp for the second semester. Creating the three-dimensional model up front allowed Dan to visualize the product, express his ideas to others, and spot potential challenges. Moreover, he was able to export particular decorative geometry from the design, and upload it to their plasma cutter to get just the right shape from the beginning.
The students look on as Dan moves the plasma cutter through its
three degrees of freedom

Computer models and computer-controlled cutting are then combined with the artistry and experience of the master; the team hammers and weathers the precision-cut piece to give it more character.
Students pass by as Andy gives attention to an iron archway,
destined for an existing window frame in Santa Barbara

The brothers’ passion for excellence in creativity came through loud and clear. Since our own students are wrapping up their Educational Design Project, where they meet with a client and work with them to develop a satisfactory 3D-printed product, the example of what this looks like in the professional world was well timed.
May we ever be inspired! Thanks to the brothers Patterson for their warm welcome, and to Mr. Rockney for coming along as an extra chaperone.

Providence Engineering Summer Camp: Robot City

What do you get when you put one teacher, three 3D printers, four high school assistants, sixteen kids, three hundred multicolored LEDs, sixteen tiny robots, and 64 square feet of plywood into two rooms for five days?!

Answer: the First Ever Providence Engineering Summer Camp!

Day 1–If You Build It, They Will Come
Pardoning the Field of Dreams misquote, Day 1 was a foray into the world of architecture and design. The upper elementary students broke into four teams, and designed their cityscape. With only a few constraints in place, they freely designed bridges, hotels, apartment complexes, playgrounds, and the mysterious “Geico district.” We’re still not sure what the market is for robot insurance.

Alena and team search architectural
magazines for inspiration

The first few buildings emerge on Day 1

Sturdy apartment complexes and hotels begin to fill the landscape

Day 2–Light It Up
After a brief lesson in electronics (diodes, conductors and resistors, oh my!), the students set about electrifying their buildings. Silver foil ran this way and that, transporting those much-needed electrons hither and yon. The prize for this day had to go to Tys’ group, with their carefully designed master control panel complete with disco dimmers.

Robot City and Britt’s Bridge come to life!
One participant’s entrepreneurial skills come to light 
Tys overseeing his team’s very
formidable end of town

Day 3–Design and Print
Arguably, they should be called 4D printers (since they operate in both space and time), but whichever side you take in this controversy, you have to agree they are a lot of fun. Students learned the fundamentals of computer-aided design (CAD), and then produced their various artifacts: signs, statues, elevators, desks, and… an artifact. The New Matter MOD-t printers ran hot for the remaining days, with many students producing two or more different designs.

An small sample of the dozens of printed designs generated by
the camp participants
Students sit with Alena, eagerly watching their creations emerge
layer by layer
A tiny blue fountain sits proudly on a street corner

Day 4–Rise of the Robots
If all that wasn’t enough already, each student was given their own tiny programmable robot. The Ozobot packs a whole lot into one cubic inch, with students writing code for following lines, flashing lights, and dance routines. The robots were programmed in two different ways: with colored racetrack lines, and then alternatively with a block-based in-browser coding language.

These colored trails give the robot a path to follow and instructions
along the way
Lots of practice with the tiny bots
The block-based coding system is a snap!
Many participants created special
mazes and challenges

Day 5–Do Over!
The week finished with a chance to go back to anything and everything! LEGO Mindstorms was used to power an elevator and merry-go-round, more CAD pieces were printed, the Geico district was finally lit up in a convincing fashion, and the robots ran amok. (In the best kind of way!)

The Geico District–now a blazing panoply of light!

Six robots come out for a dance-off!
Jake adds the finishing touches to our
once-humble board–now transformed!
We’ll finish with a huge thank you to our marvelous high school assistants, taken from the ranks of our own Engineering Academy; Tys, Jake, Alena, and Samy all did a fantastic job, and we hope they get some good rest this summer.

Final Project: Bomb Disposal Robot

The Foundations of Engineering II group finished off their year with an exciting capstone project: design, build, and program a bomb disposal robot, such as that used by special tactical groups around the world.

A real bomb disposal robot, complete with camera, manipulator
claw, and disruptor

(One quick word needs to be said from the outset: this project was carefully and sensitively planned. It was made clear to the students that this was not making light of terrorism, explosives, or other acts of crime. Rather, this was another chance to show how our engineering skills can be used to create things that combat pain and suffering and sinful acts; such robots actually keep humans out of the way of harm as much as possible.)

The students were split into three groups at random, and they set about sketching their designs, in accordance with the design brief. Each robot was required to move through the following phases:

  1. Power up and deploy, moving down a ramp.
  2. Make its way to a classroom with a “locked door” (it was made of wood and foamboard!).
  3. Break through the door and enter the hostile zone.
  4. Locate the active “bomb”, and take it back through the door to a safe location outside.
  5. Neutralize the bomb with a built-in disruptor.
    The “bomb”, made out of LEGO Mindstorms pieces, with a touch-
    sensitive touch plate on top

    Within a matter of days, the three teams had settled on their designs, and were putting together large, strong bases for their robot. Needless to say, there were no instructions to follow! Ingenuity, teamwork, and a little bit of teacher input were the tools at hand.

    Eva led her team (Colby, Todd, and David) to include the following features: a rectangular base, a balanced torque/speed arrangement for the wheels, a controllable claw to grapple with the bomb, a giant “cattle catcher” wedge to push through the door, and a chain drive to aim the disruptor up and down. Initial tests worked very well in the classroom, with a high success rate of neutralizing the bomb. Their teamwork was first-rate, with an astounding level of co-ordination and efficiency between the four of them. The team was comfortably ready in time for the demonstration.

    Eva’s team’s early design, with base and claw in place

    Colby demonstrates the surprising
    strength of the robot, dragging a stool
    across the room!

    An almost-final version, with the disruptor now mounted; note the
    chain drive to pivot and aim the disruptor

    Todd’s “cattle catcher” came out perfectly first time, made with a
    simple but beautiful loft between two triangles

    The finished product, ready and raring
    to go!

    Alena had her first chance at leadership so far this year, with Jakob, Samy, and Claire working alongside. Their robot went for a rectangular base, a higher speed at the wheels, a forklift to actually raise the bomb off the floor to carry it, and a fixed angle for their disruptor. They were then able to use their extra motor to build a high-speed 3D-printed circular saw, for breaking through the foamboard door. That’s right–a 3D-printed circular saw! Extra code was built in to ensure that the saw would only activate with a very intentional button sequence!

    An early version of Alena’s team’s solution, with a solid base
    constructed (note the “omni-wheels” that allow the robot to more
    easily pivot left and right)

    Alena works on her CAD pieces, Jakob writes code, and Samy
    “checks the disruptor for functionality”

    An early outdoor test; note the addition
    of a forklift system on the front

    The forklift and fixed disruptor are now clearly visible

    Claire works to add in the 3D-printed circular saw

    Yes, this actually did work! (Slowly…)

    Lastly, Josh led his team (Ben, Victor, and Alec) to good success with a larger, more square-ish base, a simple but highly effective spike for punching through the door, an extremely low-speed/high-torque gearing for the wheels, a claw to grab the bomb, and a chain drive to aim their disruptor. They went for the slow-but-strong approach, which made perfect sense for a challenge where time was not a mandated constraint.

    The early days of Josh’s team’s design, with the highest torque to
    the wheels of any team (the tiny gear coming from the black motors
    to the large gears at the wheels ensures this)

    Later on, a manipulator claw was added, as well as a powerful
    spike, designed by Alec

    Josh instructs his team in proper safety protocol, as Victor looks
    and Alec attaches the disruptor

    The final stages, with a chain drive now added to the disruptor

    While all this was happening over the course of several weeks, the teacher assistants Aaron and Kylie put together the door itself, complete with 3D-printed working hinges and deadbolt. Their woodworking skills were put to good use in building a simple frame to hold it all together.

    The frame and foamboard door; note the hot pink 3D-printed
    working hinges and deadbolt, courtesy of Kylie’s design skills

    On the day of the demonstration, the young engineers eagerly followed along behind the robots as they drove one by one up to the door. After much pushing, and ramming, and cutting, all three robots were able to break through and enter the room. Of special note was Alena’s 7″ diameter circular saw, which took about two or three minutes to shred the deadbolt!

    Eva’s team attempts to push through the door with brute force and
    the “wedge” principle

    Alena’s team gets ready to cut through the door; note the cyan
    spike added to the rear as a backup plan

    Josh’s team pushes through quickly with a simple spike

    The robots located the bomb, flashing and beeping in the dark. The bomb was rigged with a pressure-sensitive touchplate on the top, which would have activated if the bomb was fumbled. All teams successfully took the bomb outside with no incident (other than the wind blowing the door shut again!).

    Eva’s team drags the bomb cautiously away towards the door,
    Colby at the wheel

    Alena’s team’s unique forklift method worked perfectly, deftly
    carrying the bomb to the exit

    Josh’s team pulls the bomb over some tricky terrain and back
    through the door

    With the bomb safely outside away from civilians, the robots aimed their air-powered disruptors at the bomb. This is a real tactic that bomb disposal robots use; the idea is that a quick blast from a shotgun shell should immediately destroy all triggers and batteries and other mechanisms, thereby preventing the actual detonation.

    Eva’s group and Alena’s group took a few shots to disarm the bomb (the trigger plate didn’t “feel” their bullets enough to switch off), and Josh’s team got it first try!

    Eva’s team squares up, trying to find the best angle

    Alena’s team hugs the package tightly, and goes in for the finish

    Josh’s team readies, aims, and fires!
    Eva, David, Colby, and Todd celebrate a job well done!

    Jakob, Claire, Alena, and Samy proudly pose behind their robot

    Ben, Alec, Josh, and Victor enjoy a job well done

    All teams are to be congratulated on a solid, successful performance. The growth exhibited by these students throughout the year is phenomenal–where they once were fumbling with the most basic code lines and how to attach pieces, they now moved through it swiftly and expertly, with a minimum of guidance from the teacher. No teams suffered critical failure, as some had on previous projects, and it was a delight to see the hard work paying off.

    If you want to watch the entire play in action, please access them in this shared folder. You are welcome to download or watch online–the videos of each team are over ten minutes long!

    Excellent work all, and we’ll see you next year!

    From left to right: Mr. Meadth, Kylie (T.A.), Jakob, Alena, Samy, Claire, Eva,
    David, Colby, Todd, Alec, Victor, Josh, Aaron (T.A.); (Ben absent)

    MS Science and Engineering Expo Photos

    Thanks to all students, parents, and teachers for another incredible evening! The quality of the exhibits was high, and we could tell you worked hard. Enjoy the photos and videos below–you can click/tap on them to enlarge.

    Tessa and Chloe show their Rube Goldberg dog feeding machine

    Small children are enthralled!

    The dogs enjoyed the show, too

    A functional, hand-cranked, 3D-printed
    Archimedean Screw

     

    Jed and Ben show Lower Campus students their French Revolution
    demonstration–fruit was definitely harmed in the making of this
    exhibit!

     

    …but put to good use in the
    Blender Bicycle by Cate and Valeria!
    Don’t forget to hold that lid on!

     

    Mercy and Jenny help Mrs. Short to understand key principles of
    buoyancy, density, and mass–looks like exciting stuff!

    Christine and Ashlynne with their impressive pulley arrangements

    Pedro and Julian with their LEGO version of the legendary
    Claw of Archimedes

    Lux and Olivia put together this
    impressive homemade hydraulic
    robot arm–well done, girls!

    Selene, Mr. Hougo, and Asher prepare a live demonstration of
    a compound pulley system

    Doing fine, three feet off the ground
    Also doubles as a “time out” device
    for small children (it’s all right–it’s
    Mr. Meadth’s son)
    Caleb and Michael explored another
    apocryphal war engine: the Archimedes
    Death Ray!

     

    Chloe and Ava with a motorized Aerial Screw, taken straight from
    the pages of Leonardo da Vinci’s notebook

    Kayode and Josh lift 80 pounds of concrete and steel with a 3:1
    mechanical advantage

    Dylan and Jordan produced another
    engine of war: the tennis ball ballista!

    Sam and Tommy with their homemade motorized paper plane
    launcher!  Standard equipment for every boy aged 5 to 105

     

    Belen and Erica with an array of
    marshmallow catapults

    A surprising number of marshmallows never made it to the catapults

    When Mr. Alker’s son wasn’t eating them, Mr. Alker was

    Deacon and Chris were popular with
    the racing crowd, tracking time, speed,
    momentum, and kinetic energy

    Julian and Zak loading a high-tension catapult, constructed entirely
    of steel frame–be sure to watch the videos!

    Once again, well done 8th Grade! Finish the year strong, and we’ll do this again next year.

    MS Science and Engineering Expo–Monday!

    The Providence Engineering Academy and the MS Science Department are excited to present the second annual Middle School Science and Engineering Expo. It will be held at the Providence Upper Campus (630 East Canon Perdido Street) on Monday, April 24 from 4:30 pm to 6:30 pm. Entry is free, and refreshments will be provided.

    Levers, pulleys, and screws, oh my! The theme is “Machines”, with a medieval/Renaissance twist. The students have spent a month preparing their projects, building catapults, pulley systems, Archimedean war engines, and more. The interactive exhibits will be running the entire time, so come learn and support our students at this fun, family-friendly event!

    Erica and Belen carefully design their catapult poster
    Dylan with his very impressive
    tennis ball ballista

    Science history buffs might recognize this one–Eureka!

    Julian with an almost-finished Archimedean war engine

    Is that a blender on the back of that bike, Valeria? Smoothie to go!

    Chloe with a scale model of Leonardo’s aerial screw

    (Many thanks to Kylie from the Providence Engineering Academy for helping write this article.)

    Project Demonstration: RC Cars On Lower Campus

    Elementary school students at our Lower Campus received a special treat last Friday when the students of the Foundations of Engineering II class demonstrated their latest project: remote-controlled cars. Utilizing much of the same equipment as the self-driving car project of last semester (i.e. the Vex robotics kits, CAD, and lots of trial and error), three teams of students constructed cars that they operated via a video game controller. After many weeks of hard work, multiple prototypes, and perseverance, the cars could move forwards, backwards, and turn on a dime with rack-and-pinion steering (well, maybe a silver dollar). Each car also had a built-in payload delivery system that deposited a 3D-printed figure at the push of a button, and a rear-wheel differential gearbox to allow for better cornering.

    The afternoon’s proceedings began with a brief introduction of the project to the 5th and 6th Grade students, given by the engineering students’ teacher, Mr. Rodney Meadth. Mr. Meadth outlined the goals of the project and recounted some of the difficulties the students faced during the design process.

    Mr. Meadth warms up the crowd before the demonstration


    During Mr. Meadth’s introduction, the three teams of students worked diligently to set up their cars. As with the self-driving car project, each of the three teams comprised four students, with distinct roles as follows:

    • Team Leader: co-ordinate efforts, give attention wherever needed, be an all-around expert in everything.
    • Mechanical Engineer: primarily responsible for building the physical structure of the robot, mounting sensors, and attaching custom parts.
    • Programmer: working on code that will navigate the robot around the course, incorporating sensor feedback and motor outputs to ensure success.
    • CAD Specialist: design custom parts in a CAD program (all students used Onshape), and then print them out for use in actuality.


    Team ESTA makes their final preparations (Eva, Samy, Todd, Alena)

    After the introduction, the teams each performed a solo demonstration of their vehicle. The demonstration consisted of navigating a course and delivering the car’s payload to a marked target area on the floor.

    First up was Team ESTA, with Eva, Samy, Todd, and Alena. After placing their vehicle at the starting line, the team carefully drove through the course towards the payload drop-off zone. With some slight course adjustments, ESTA managed to successfully deposit their payload, showing off their unique hinged box delivery system. Alena worked for weeks and went through several prototypes to ensure the hinges mated correctly, and could be driven by a VEX motor. Her online CAD file is publicly available here–you can even open and close the box by grabbing the lid with your mouse!

    Next came Team JABS (Josh, Alec, Ben, David), whose car intimidated the competition with bright orange, spiked hubcaps and a crimson racing flag bearing their team name. They too successfully navigated the course and delivered the payload, though at a slightly slower pace than that of Team ESTA.
    The Team JABS car living up to its team
    name with some intimidating spiked hubcaps, designed by Alec


    After overcoming some controller connection issues, the final team, JCVC (Jakob, Colby, Victor, Claire), demonstrated their car. JCVC’s vehicle was the simplest of the three, lacking the adornments or sophisticated payload system of the other two competitors, but what it lacked in sophistication, it made up in the form of speed, being the fastest of the three to complete the assigned task.

    With the end of the individual demonstrations, came the main event of the day: a race between the three cars around the track to determine which team had built the best remote controlled car. The elementary school students were abuzz with delight as the three teams lined up their vehicles at the starting line. The question on everyone’s mind: Who will be victorious? 

    The tension is palpable as the cars take their starting positions
    for the race; from left to right: JABS, ESTA, JVCV


    With a shout of, “Go!” from Mr. Meadth, the cars raced down the track. However, the chances of victory for one team were extinguished in mere seconds. Team JABS, despite an impressive showing in the individual demonstrations, suffered an immediate steering malfunction that, in spite of their best troubleshooting efforts, ultimately kept them out of the race. The two remaining cars continued to zoom around the track, largely neck and neck for several laps.

    In a huge upset, Team JCVC suddenly suffered a critical mishap! As Team JABS attempted to resolve their steering issues on the track, they (accidentally?) managed to ram the “emergency off” button on the side of JCVC! This left only one car still standing, still making consistently strong laps. Team ESTA ended by pulling confidently into the drop-off zone and depositing their payload perfectly, eliciting a roar of applause from the 5th and 6th Grade!

    Team ESTA members Samy, Alena, Todd, and Eva revel
    in their victory

    After the race’s conclusion, Mr. Meadth brought up the winning team and opened the session up to questions from the audience. When asked by one of the Lower Campus students how one goes about making a project of this difficulty, Team Leader Eva encouraged the student to, “always ask for help, be patient, plan stuff out, and don’t be afraid of failure.” Programmer Todd answered a question about the coding process by calling for perseverance amidst “a lot of failures” in order to eventually find success.

    The RC car demonstration on Lower Campus was a thrill for all in attendance, from the delighted elementary students to their cheering teachers. Well done to all teams for the many weeks of hard work leading up to this, and especially to Team ESTA!