In the Steps of Orville and Wilbur

The Advanced Engineering II group has a unique and challenging task in front of them. In fact, it is quite possible that none of the students has ever undertaken something quite like this: a group project that lasts from September to March—designing and building a model glider!

The students have been hard at work learning the fundamentals of aerodynamics, as applied to conventional aircraft. They understand Bernoulli’s principle, the momentum shift theory of lift, what induced drag is, and why most modern aircraft have those little turned-up ends on their wings. They know the value of the theoretical lift curve slope, and how much lift an uncambered airfoil produces at a zero angle of attack, and they can check it all in a virtual wind tunnel test! Impressed yet?!

Luke (11th) and Kylie (12th) consult their extensive course notes
as they work on the detailed design spreadsheet

Divided up into four teams, the students have just put the finishing touches on their complex design spreadsheet, which describes in precise detail the various features of the glider they are going to build. Each glider will be thrown from the top of the science lab building onto our field, carrying a single (unboiled!) egg to safety as far downfield as possible. The plane that successfully flies the farthest and lands safely wins!

Tys (12th), Victor (11th), Colby (11th), and Mikaela (12th) happily
nearing the end of their design calculations after several weeks

The students will be using a variety of materials and techniques; we are currently amassing a stockpile of carbon fiber tubes, balsa wood pieces, tissue paper, cellophane, lead weights, aluminum wire, and other bits and pieces. The teams are creating CAD models of their wing cross-sections, intending to 3D print them in the coming weeks. Most of the gliders are about three feet across the wingspan, about two feet long, and weigh a bit more than half a pound. (By the way, all of our work is done in metric units, to be in keeping with international physics standards!)

In order to get a real hands-on feel for the work, the group also took a special visit up to the Santa Ynez Airport, where they were shown a variety of gliders and powered aircraft. This was the perfect chance to connect theory to practice, and it no doubt helped inspire the students as they move into the manufacturing phase.

Josh and Gabe look at the cockpit
of an older glider

Dave and Colby, employees of the airport, graciously showed us around the couple of dozen light aircraft sitting on the runway, answering student questions about wing design, gliding techniques, and the pilot license process.

Megan and Caleb dreaming big as they stand by another one of
the gliders
The students look on as Colby describes the sleek and elegant
Cirrus light aircraft

As more airplanes took off and landed around them, the students got up close views of a shiny Cirrus, many older Cessnas, and an unusual-looking Long-EZ. Colby described to us the great thrill of flying, being in perfect solitude up in the sky; he is working towards his powered pilot license.

Is it a spaceship of some sort? The Long-EZ design is not
recommended for the students to imitate for their glider design

The class’s six seniors from left to right: Tys, Mikaela, Caleb, Megan,
Aaron, and Kylie; our guide Colby on the right
With plenty to fill their heads about glide paths, turbulent flow, night navigation, wing construction, parachutes, and fuel pods, the students took one final pose on an aircraft they were allowed to sit in! Thanks very much to Dave and Colby and all of the crew up at Santa Ynez—perhaps we’ll see you again sometime soon! Airport Day is coming up on Saturday, May 20th, and all are welcome.

Educational Design Project

In the Providence Engineering Academy, we emphasize the idea that technology ought never to be an end in itself. Technology for technology’s sake rings hollow, and as Christians we ought to see all things as being good and useful for God’s kingdom purposes. A very real question for us is this: how can we use engineering, design, and technology to love others? As engineers, are we perhaps able to serve others in ways that others cannot?

In answer to this question, the 9th/10th Grade Foundations of Engineering I class asked for and received requests from our school’s own teachers and staff. We asked them what they could use in their classrooms and offices that we could design and then 3D print. In the past, the students have produced models of ziggurats, pyramids, and Solomon’s temple. They have made gear ratio demonstrations, ten-sided dice, and computer monitor stands.
This year, the entries were just as exciting. We start with several geometric demonstrations for Mrs. Smelley, our 7th and 8th Grade mathematics teacher, designed by Ava and Peter. Ava created some simple trapezoid area demonstrations, as well as a cubic volume demonstration. Peter built a folding box that opens up to show how a 2D net is created from a 3D shape. Mrs. Smelley was delighted, telling the students “you have really supplied the tools for our class.”
Mrs. Smelley gratefully receives the cubic volume project from Ava 
Peter’s folding box design: click here to view the online version

Next up was Sam, with his large model of a cell for Mr. Alker’s middle school biology class. Sam created each piece as separate, so students can pull it apart, and really “feel” what they have seen in the textbook.
Sam looks on as Mr. Alker identifies the various bits and pieces

Todd produced a somewhat unique request: an anti-theft device! Mr. Hurt finds that his classroom calculators tend to go “missing”, and so he is embarking on a social experiment. Will fastening a distinctive 3D printed science-themed design to the back of them change the outcome? Only time will tell. At the very least we appreciate this practical use of the scientific method.
Todd’s design features a striking gold-on-black circuit board pattern
Next in line is Caleb, who designed something along more structural lines: a replacement door handle for a cabinet in our science and engineering lab. This project was a good lesson in meeting external constraints; it had to be strong enough, match up with the existing screw holes, and allow for screws to actually take hold of it. Caleb also added some extra pizzazz.
The new door handle, with Providence logo, in place and ready to go!

Madison designed some calendar labels for Mrs. Penton, enabling her to easily highlight different events as the year rolls by. The labels are removable and have pre-printed words on them for common activities and events.
Mrs. Penton shows off her new designs!

Ben also went the structural route by creating some shelving brackets for Mr. Meadth. Why go store-bought when you can have custom-made? Mr. Meadth greatly appreciated Ben’s creativity, as he created dozens of “bubbles” and carefully placed holes to match up with the existing bolt locations.
Ben’s brackets support a display shelf for the Calculus class

Pedro helped complete a design that was begun last year by 11th and 12th Graders. The idea was to build a column compression demonstration, showing how compressed columns form a variety of buckling modes, depending on end fixity conditions. Pedro adroitly designed a sliding attachment, which keeps the end of the column from rotating while allowing one-dimensional translation. This will see use next year in classes!
The column testing device is finally
complete, thanks to Pedro

Alena chose to work on the Engineering Academy keychains for next year. We have a tradition of producing simple keychains for everyone in both classes, and Alena is working on something that echoes next year’s themes of robotics and structural engineering.

A miniature wrench, courtesy of Alena

And finally, Josh designed a caddy for Ms. Svoboda in middle school. Ms. Svoboda teaches between different classrooms, and this caddy allows her to quickly bring some essential items for her afternoon class. In this case, Josh worked to supplement an existing file holder with customized attachments. Ms. Svoboda was delighted with the results!
Have caddy, will travel!

As a final word, Mr. Meadth and Claire (our 11th Grade T.A.) also worked to produce some pieces for the Providence Preschool. Our new director, Cheri Diaz, wanted some “natural” items, so we printed a starfish, a seashell, a honeycomb, and some ice cubes (all but the ice cubes were found online on Thingiverse). We hope the children enjoy playing with them!

MS Engineering: The First Month

The popularity of the middle school engineering program at Providence has really taken off this year; for the first time, we will be admitting eighteen students in both first and second semester! It’s our largest class size yet for this program, which is exciting. But what exactly, I hear you ask, are students doing in that class?

We kicked off the year with some pretty standard stuff. Newton’s Laws kept us busy for a little while, talking about how objects in this universe move and interact. The highlight of this unit would have to be the inertia demonstration. Remove one tablecloth very quickly from underneath a dinner set, and hope that inertia does its job! Ryan was a very cooperative test subject.

The students also started the year with some simple challenges, focusing on teamwork, speed, and intuitive design. How many textbooks can you hold up, at least five inches off the table, using only two sheets of paper and a yard of tape? By the way, you only have two minutes to plan and three minutes to build! The class record is 26, held by Josh and Pedro a couple of years ago, but hats off this year to Audrie and Kassy, holding 12 books six inches high. At 3.6 pounds per textbook, that’s 43 pounds!

Paul and Lily look on as Ella places her third book; unfortunately,
it was the straw that broke the camel’s back

The most recent challenge was to build a bridge between two desks. After learning some basic principles of structural mechanics (triangle rigidity and maximizing the second moment of area of the cross-section), the students set about the task. We always talk in terms of constraints in this class, and the various constraints were as follows:

Only allowed to use LEGO beams from a provided parts list
Three days of class
Teams of two
As long as possible (maximize)
Must support wooden train tracks (static load) and a motorized train running across it (dynamic load)
Must demonstrate the principles of good bending structures that we talked about
After breaking into teams, the students quickly set about collecting their pieces, and sketching their designs. Our enthusiastic students snapped together beams and frames, doing their best to imitate the rigid triangular structures they had been shown.
Gideon, Liza, and Kaitlyn working hard!

Tensions ran high (no pun intended) as the heavy little locomotive crawled across the tracks. The length of the bridges varied widely, from the shortest at 30 cm (1 ft) to the longest at 99 cm (over 3 ft). But most importantly: would the helpless engine tumble into the chasm?

The little engine thought it could, and so did Dennis and Jeffry,
with their sharply defined triangles clearly showing

Audrey and Kassy almost lost their load, but everything held
together in the end!

Miranda and Evan held their breath as the locomotive crawled
across their creation
In fact, although we desperately wanted to see some disaster, not a single one of the bridges failed! This is a new record in the engineering elective, and perhaps a tribute to their collective wisdom and skill (or maybe to their teacher?).
The next challenge? Use their knowledge of torque and rotation to build a crane that can lift as much load as possible.
Kassy and Evan carefully plan their motorized crane
Ella applies the power of a protractor

Dennis and Paul take a break from the drawing board to pose
for the camera

Tully and Liza consider Mr. Meadth’s past designs
Stay tuned, and don’t forget to ask your students how the work is coming!

Wild West Town—Completed!

If you’ve visited the Providence Lower Campus in the last couple of weeks, you might have noticed an exciting new development in the Grove. Lo and behold, the Providence Engineering Academy has completed its children’s playground project—and just in time for the new year!

The completed project, in place at the Lower Campus Grove

For those who have been following along, you’ll notice that this project has moved through different stages through the year. Our original plan from the first day of school was to have the six Advanced Engineering I students design and build a children’s playground for the Grove. The students met with Mr. Knoles as the client, came up with a woodsy theme, wrote and received a grant from the local EnergyPartners Fund, learned about California safety standards, created a detailed CAD model, constructed a physical 1:16 model to put on display, and ran many structural calculations to inform their design. For more details of where we got to, check out this post from February.

After a couple of months, we realized that although the plans were solid, there were a lot more moving parts in the mix than could be resolved this year. Having already received our grant for materials and tools, and having a month of the school year still set aside for construction, we quickly changed tack. The students brainstormed along different lines: what could we design and build that would be small, fast, portable, safe, and a ton of fun?

Answer: the Wild West town!

In an amazing display of teamwork and ingenuity, the six students (Aaron, Tys, Sarah Jane, Kylie, Caleb, and senior Jake) quickly produced a set of plans to communicate the idea to our client and provide useful tools for estimating, purchasing, and construction.

Front view: restaurant, shop, house

The town would be built in two sections, each 12 feet long, about 5 feet high, and 4 feet deep. Six distinct rooms would be included: a restaurant, a general store, a residential home, a train station, a sheriff’s office, and a jail.

Perspective: train station, sheriff, jail (CAD model unfinished)

With approval from the Lower School, the students set to work. Bethany Bodenhamer, one of our industrious Lower School parents, negotiated with Home Depot and coordinated the deliveries of tools and lumber. Marty Robertson graciously allowed us the use of his miter saw for the entire duration of the construction. Peter Bohlinger also loaned many high quality tools used throughout the construction.

And so the work began! The backyard of the Upper Campus was converted to a scene of enthusiastic creativity. The six students, with their varying levels of experience, quickly grew in their confidence in measuring, cutting, and attaching the lumber—and always with safety eyewear, of course!

The play structure develops over the course of several weeks

When school let out in June, the students had made a terrific start on the structural framing, and some of the siding. Who knew that trigonometry had practical application?!

From left to right: Tys, Jake, Aaron, Kylie, and Caleb

In this image, the CAD model has been added as an overlay
to help visualize the final product

Clockwise from top: Aaron, Kylie, Sarah Jane, Tys, and Caleb
show off their craftsmanship

The restaurant nears completion (left); the framing for the railway
station, sheriff, and jail is practically complete

The reverse angle view in the backyard

Once summer came, others pitched in to help. Visiting alumnus and founding member of the Providence Engineering Academy Gabe Clark worked alongside Jake and Tys; Mr. Hurt brought his wife (great with child) and parents; Mr. Meadth’s son Asher even lent a hand!

Tys (in the window), Jake (middle) and Gabe helped secure the
roof and siding for the general store

Five Hurts across three generations! This family means business

Dad got them started, and Asher finished them off

A good deal of work was also done on adding finishing touches—it’s the little things that count!

A double-swinging door for the restaurant, just to give that classic
kickin’-in-the-door outlaw feel

A sink and counter adds the homely touch

Solid steel bars divide the sheriff from his catch of the day

The ticket counter for the railway station sports wrought-iron
decorative work

In case there was any mistaking which one was the sheriff’s office!

Finally, five strong friends of the school helped Mr. Meadth load the four separate pieces and transport them to the Lower Campus—one 500 lb piece at a time. After a bit of practice, the complete round trip was timed at 40 minutes! Of course, Ms. Svoboda was on hand to document the experience.

Ready—lift! Is that one of our new 7th Graders?

We certainly turned heads driving down State Street!

A place for everything and everything in its place!

A final word of thanks goes out to two parties. The EnergyPartners Fund generously provided what was necessary to go out and do this. They have been loyal supports of our program for several years now, and we are indebted to them. And naturally, well done to the six young engineers who envisioned this, designed it, and sweated it out. Mack Fixler at MOXI and his high-powered laser cutter have ensured that their place of honor will stand for time immemorial.

Thanks, EnergyPartners Fund!

Six strangely familiar villains, immortalized through the
magic of lamination and synchronized photons

Who knows what the coming year will bring? Don’t forget to subscribe to this blog, and we’ll let you know! And go explore the Wild West town next time you’re there; you won’t be disappointed.

Til next time!

Providence Engineering Summer Camp: Robot City

What do you get when you put one teacher, three 3D printers, four high school assistants, sixteen kids, three hundred multicolored LEDs, sixteen tiny robots, and 64 square feet of plywood into two rooms for five days?!

Answer: the First Ever Providence Engineering Summer Camp!

Day 1–If You Build It, They Will Come
Pardoning the Field of Dreams misquote, Day 1 was a foray into the world of architecture and design. The upper elementary students broke into four teams, and designed their cityscape. With only a few constraints in place, they freely designed bridges, hotels, apartment complexes, playgrounds, and the mysterious “Geico district.” We’re still not sure what the market is for robot insurance.

Alena and team search architectural
magazines for inspiration

The first few buildings emerge on Day 1

Sturdy apartment complexes and hotels begin to fill the landscape

Day 2–Light It Up
After a brief lesson in electronics (diodes, conductors and resistors, oh my!), the students set about electrifying their buildings. Silver foil ran this way and that, transporting those much-needed electrons hither and yon. The prize for this day had to go to Tys’ group, with their carefully designed master control panel complete with disco dimmers.

Robot City and Britt’s Bridge come to life!
One participant’s entrepreneurial skills come to light 
Tys overseeing his team’s very
formidable end of town

Day 3–Design and Print
Arguably, they should be called 4D printers (since they operate in both space and time), but whichever side you take in this controversy, you have to agree they are a lot of fun. Students learned the fundamentals of computer-aided design (CAD), and then produced their various artifacts: signs, statues, elevators, desks, and… an artifact. The New Matter MOD-t printers ran hot for the remaining days, with many students producing two or more different designs.

An small sample of the dozens of printed designs generated by
the camp participants
Students sit with Alena, eagerly watching their creations emerge
layer by layer
A tiny blue fountain sits proudly on a street corner

Day 4–Rise of the Robots
If all that wasn’t enough already, each student was given their own tiny programmable robot. The Ozobot packs a whole lot into one cubic inch, with students writing code for following lines, flashing lights, and dance routines. The robots were programmed in two different ways: with colored racetrack lines, and then alternatively with a block-based in-browser coding language.

These colored trails give the robot a path to follow and instructions
along the way
Lots of practice with the tiny bots
The block-based coding system is a snap!
Many participants created special
mazes and challenges

Day 5–Do Over!
The week finished with a chance to go back to anything and everything! LEGO Mindstorms was used to power an elevator and merry-go-round, more CAD pieces were printed, the Geico district was finally lit up in a convincing fashion, and the robots ran amok. (In the best kind of way!)

The Geico District–now a blazing panoply of light!

Six robots come out for a dance-off!
Jake adds the finishing touches to our
once-humble board–now transformed!
We’ll finish with a huge thank you to our marvelous high school assistants, taken from the ranks of our own Engineering Academy; Tys, Jake, Alena, and Samy all did a fantastic job, and we hope they get some good rest this summer.

Advanced Engineering: Grove Model Complete!

If you’ve been following this blog, you might recall that the Advanced Engineering class was laying out conceptual designs for a playground structure destined for the Lower Campus. They have been fairly quiet since then, except for announcing a grant that was awarded in October. However, much has gone on in the background: our six students have been learning about stress strain, Hooke’s Law, materials science, and cross-section analysis. They also began work on a long-term design report that will be completed by the end of the year.

And then…

Our own Sarah Jane suggested that the group take the advice of local architect Jeff Shelton, and turn out a scale model of our intended structure. It wasn’t in Mr. Meadth’s original curriculum plans, but it seemed like a good idea!

So they turned to the CAD model.

For any CAD nerds out there, you’ll recognize this as having been created in SketchUp, a fully-featured free program commonly used by architects and product designers the world over.

This model was completed jointly by the entire class, with each of the six tackling individual parts and then sending the file to Mr. Meadth for incorporation into the whole.

Some aspects of the model have been since changed, such as standardizing the railing system across the entire model. It’s a continual work in progress, as the group shifts from conceptual to detailed design.

After some packs of balsa wood, modelling clay, and other miscellaneous items arrived in the mail, the team set to work making a 1:16 scale model. Caleb became quite proficient with a craft knife.

The four surrounding trees were created in clay, courtesy of Sarah Jane, and Kylie got very good at staining balsa with a foam brush.

Hot glue guns at the ready!
Jake carefully placed his pieces onto the board (helpfully supplied by Tys)…
Much work was done by Aaron and Kylie over the next few weeks, in lieu of their usual teacher assistant job in Foundations of Engineering II, and our Westmont engineering intern, Robert Huff, also lent a hand at the very end. A few 3D-printed black tires and a whole lot of sawdust completed the scene, and the designers gathered to celebrate!

Finally, the completed model was transported to Lower Campus, and descriptive labels were attached so as to describe some of the features to passers-by. Mr. Knoles proudly placed the entire scene with some CAD images right by the front door of the office, and it only took a few moments for a small crowd to gather and start asking questions!

Bottom line: the project is alive and well, and please stop by the Lower Campus to view the completed scene. We have another grant in the works, and already have some parents who have offered to help with donations and construction (commencing in May and continuing through the summer), but please reach out and contact Mr. Knoles ( or Mr. Meadth ( if you would like to offer skilled help/resources, or know someone who can.
And don’t forget to cheer on our engineering students when you see them!

Project: The Self-Driving Car

We’ve recently reported on the Advanced Engineering I playground design project, but what exactly is keeping the younger group busy right now? If you pass by Room 401 most any afternoon, you’ll find twelve freshmen and sophomores, six computers, three VEX robotics sets, two T.A.s, and one teacher very hard at work! The project? It’s a little ambitious, but we are intending to design, build, and program three self-driving robot cars, in the manner of Google, Uber, Tesla, and a few others.

Just another typical day of class in the Providence Engineering Academy

The way of the future! But first a bit of background. Robotic cars fall into two broad categories: smart cars and smart roads. Smart car systems have all of the design and engineering and intelligence in the car itself, relying on GPS, lots of sensors, and careful programming. By contrast, smart road systems have some sort of marker built into the road itself to provide information to the car–one idea proposed in the past was to have magnets embedded into the road surface. While all companies are now putting all of their efforts into the “smart car” option, ours fall into the “smart road” category; we have a white line track on a dark background that shows the car where it needs to go. No white line means no navigation.

Left: the design brief and the plans for the roadway; right: the actual roadway,
newly constructed, mounted on an 8 foot by 8 foot plywood base

So what does it take to get this going? The number one resource is human intelligence; each of the three teams comprises four students, with distinct roles as follows:

  • Team Leader: co-ordinate efforts, give attention wherever needed, be an all-around expert in everything, and keep a daily Captain’s Log.
  • Mechanical Engineer: primarily responsible for building the physical structure of the robot, mounting sensors, and attaching custom parts.
  • Programmer: working on code that will navigate the robot around the course.
  • CAD Specialist: design custom parts in a CAD program, and then print them out for use in actuality.
The beauty of this is that each member necessarily must work together with the others to achieve the outcome. The mechanical engineer needs input from the programmer as to where to place the sensors so that they work with the written code. The CAD specialist needs to also work with the mechanical engineer to decide what is most needed and where it should be placed. The team leader needs to choose just how to spread themselves each day to get the current priorities in order.
Ben (left) working on code; David (center) attaching his wheels to the frame

Samy, one of the mechanical engineers, putting together a frame for his
team’s vehicle

Each team was allowed to choose between two types of steering design: rack and pinion, or a simpler design where the entire wheel and axle rotates around a central pivot. All three teams went for the rack and pinion, which is the same design found on modern cars. A single gear (the “pinion”) rotates on a flat linear gear (the “rack”), which pushes it left or right, in turn causing the front wheels to point in either direction.
The custom CAD parts are another particularly exciting part of this project: the three CAD specialists are using the online platform Onshape to make pieces that are specific to their own robot. Just for fun, one team created a license plate with their team name, which is now proudly mounted on the front. Two teams are currently working on a box to hold a payload to be delivered along the route. The third team created a “shadow shield” to go underneath the vehicle and keep the line-sensing infrared sensors out of direct sunlight to make them more effective. The CAD specialists had to create bolt holes that match with the VEX robotics system, and they have infinite control over everything else.
One team’s container design, intended to hold a small payload; a door is going
to be added to keep things secure until delivery

Another team’s payload device is an open tray which flips up to release
upon command; note the square axle hole for connection to the motor

Both of the above designs are printed full size; so far, it looks like they will
be perfect!
The teams have another couple of weeks to finish this project, and they look to be on schedule for completion and demonstration.
Mr Meadth also decided that it would be fair for him to produce a proof of concept–can this really be done, after all? He used one of the spare middle school LEGO sets, which has an array of similar sensors and mechanical capability, but a very different coding language.
LEGO Mindstorms coding language–colourful blocks that snap together!

RobotC coding language, as used by the high school students–lines
and lines of colour-coded text
After a few hours of work, he came up with this smaller LEGO version, and it gets around the full track in about 18 seconds on its slowest, most cautious speed.
The LEGO robot car in action–note the three colour sensors in a bank on the
front; having three side-by-side allows for more sensitivity in response to the
car’s exact position
Proof positive–it can be done! Upon completion, the robots will be demonstrated to the Providence community; we may go down to Lower Campus and show one of the elementary grades what we’ve done. Stay tuned.

    Visit to UCSB Mechanical Engineering Department

    On Monday of this week, sixteen Providence teachers and students took a trip out to UCSB, to visit the Mechanical Engineering department. Kirk Fields, Senior Development Engineer, met the group there and gave a tour of a few of the lab spaces.

    The “clean room” was the first stop, and we noted that this is where Sarah Jane’s father works to assemble his company’s tiny lasers. We didn’t see him through the window, but there were many interesting microscopic images of gecko feet!

    The materials testing lab tied in well to what we have recently studied with our older group, Advanced Engineering I. Our students have been testing various materials in compression, carefully measuring the loads required to produce deflection, and deducing the modulus of elasticity–in layman’s terms, a measure of how “springy” a substance is. This UCSB lab held dozens of industrial-grade machines to do similar experiments in compression, tension, fatigue, and so on.

    Kirk (right) shows us the materials testing lab

    Kirk was also able to show us a special research project, which involved a Perspex beam that “pushes back” when it a load is applied. Ordinarily, pushing on a beam would make it bend downwards, but this beam is equipped with sensors and motors that resist the action; this creates a beam with “infinite stiffness”, so to speak.

    The beam of “infinite stiffness” reacts and pushes back against applied load

    We walked through some other spaces (including the wind tunnel), ending up in a robotics lab that housed an in-house competition much like what we do in our own middle school and high school classes. The college students design robots using a variety of motors, sensors, and LEGO structures; the robots (“rats”) run around a walled-in elevated platform and collect “cheese”.

    One of the “rats” from last year is on display in the central case

    The visit, though short, was well worthwhile. Jake, our senior, recently applied to this college and this department, so he was glad to meet some people and get a firsthand look. Mr Hurt, also present, graduated from this campus, and happily reminisced about times past.

    All in all, a positive experience, and we’re grateful to UCSB and Kirk Fields for allowing us the chance to come by!

    Guest Speaker: Nathan Gates

    Last Friday, our Foundations of Engineering II group was privileged to hear from retired aerospace engineer Dr. Nathan Gates. Dr. Gates has worked for many years at Astro Aerospace, based in Carpinteria, and is recently retired.

    Dr Gates shows a telescoping boom design that he worked on

    Dr. Gates’ impressive career was mainly focused on thin, light, graphite structures, such as those used on spacecraft and satellites. His specialty was “deployable” structures, which are launched in a folded-up configuration and then unpackage once in orbit. One recent project will unfold over two weeks to the size of a tennis court, despite being launched in a payload cylinder only a few meters wide.

    Students eagerly listening to tales of projects past!

    Dr. Gates ended his stories with a memorable reference to Eric Liddell, the Scottish Olympic athlete, who famously stated “when I run, I feel His pleasure.” Dr. Gates has worked for years in the aerospace industry to the best of his ability, designing and creating in imitation of the Great Creator, feeling His pleasure, and living Coram Deo—before the face of God. Our students would do well to take heed.

    We are very grateful to Dr. Nathan Gates for sharing with us, and hope to have him again soon!

    Bridges, Cranes, Robots

    After some humble beginnings to the semester (Newton’s Laws, basic structural mechanics, and gear ratios), we have had a string of exciting projects in our middle school engineering elective. Within the last few weeks, students have built railway bridges, designed high-torque crane systems, and are now writing code for simple three-wheeled robots.

    Mr Meadth stands watch over the first train journey of the day–all is well!
    The Bridge Challenge had students demonstrate their understanding of structural rigidity. The students were told that triangular structures are inherently rigid, and can’t change shape without breaking. They also identified the bridge as being primarily subject to bending loads, in which case it is best to build a bridge that is tall.
    (For all you engineers out there, they learned to use a cross-section with a high second moment of area!)

    Another bridge with an underslung truss system

    Asher and Christine carefully plan out their triangular structures
    From here, we looked at the interplay between torque and rotational speed. Anyone who has ridden a bike with gears or driven a manual shift car understands that different gear arrangements really do produce a change in outcome–you shift down gears to pedal up a steep hill. Our middle school students calculated various gear ratios, and also felt the hands-on difference, thanks to Jake’s Educational Design project from last year.

    Zach and Isaiah feel the increase/decrease in torque for a 3:1 ratio
    The lessons in gears were put to the test in the Crane Challenge, where students used the EV3 Medium Motor to raise as much weight as possible. The structure had to be strong enough to hold the weight (think triangles and rigidity again), and the gear ratios had to be reduced down one or two or even three times. Bottom line: a slower crane is a stronger crane!

    Zach and Sam added a few “characters” to their
    impressive submission, and were able to
    raise 800 grams (almost 2 lb)

    Lily and Isabela and “The Giraffe”; they raised
    a total of 300 grams

    Currently, students are working with a basic robot called the “Robot Educator”. This three-wheeled design is built from instructions, and is for the purpose of learning basic programming skills. The students are learning to tell the robot to move forward/backward, turn around, raise and lower its front trap, and make noises. They are also finding out about loops and conditions and switches, which help make programs more sophisticated. All of this experience will be used later in the semester as the teams design, build, and program their own robot.

    Seven Robot Educators, lined up and ready for action!

    More to come, so stay tuned!