Upcoming Event: MS Final Challenge!

In the Providence Middle School, fourteen 7th and 8th Graders are working busily on their capstone project for the semester: the Intro to Engineering Final Challenge! Every semester, the students in this elective are given a game-style challenge to complete, which involves designing, building, and programming a robot using LEGO Mindstorms EV3 sets.

This semester’s challenge is being played out on a large elevated plywood platform, 8 ft by 8 ft. Mr Meadth spent a happy few hours putting this together in the science lab.

Each team of two students must create a robot that can sweep the platform clear of various pieces of coloured “debris”; imagine a small robot whose task is to permanently keep a rooftop helipad clear of windblown trash. Two robots are running in each round simultaneously, and whoever pushes off the most debris wins.
Special note: the pieces of “debris” we are using are the game pieces designed by Eva last year for her high school Educational Design project! Naturally, they are printed on our mod-T printers, which are still running strong (and now only $299 on their website!).
There are significant challenges associated with this project. How do you keep the robot from falling off the edge of the platform? How do you actually have the robot find the scattered debris? Does it run a blind search pattern, or does it try to use sensors to actively search? What kind of locomotive means does it use? Tracks or wheels or something else? What if it bumps into another robot?

Let’s introduce our competitors this semester:

Isabela and Lily with their wheeled wonder–note the absence of rubber tires
on the front wheels to allow sideways slippage when turning

Christine and Sofi with their light and fast Pretzel Bot

James and Dylan with an imposing bulldozer–note the ultrasonic sensor on the
front to look for debris

Zach and Alan also went with a tracked design, and a large superstructure on
top for style points!

Ma.kaha and Cameron put their colour sensor way out in front to detect the edge
of the table–not falling off the table is critical to success!

Asher and Sam have an armoured design that looks just plain scary

Masato and Isaiah did some late redesign work to try to bring down their weight–
the robot with a lower weight gets the advantage of being placed first
The students will be presenting their completed designs to the rest of the class this Friday. The actual competition will take place in the Boys & Girls Club gymnasium on Monday and Tuesday at 1:00 during regular class time. Parents and friends are welcome, and it promises to be a lot of high energy fun!

Midde School Final Challenge Complete!

After weeks of hard work designing, building, and programming a Mars rover, four middle school teams headed out to the gym to put it all to the test. These robots were created entirely from scratch–no instructions, no plans, just the student teams and their own wits! The goal was to create a remote-controlled robot that could collect four 3D printed “Mars rocks” as quickly as possible, using whatever means necessary.

Team 1 (Sam, Cole, Nik, and Pedro) went for an asymmetrical design, driven by two strong rubber wheels in the back. An arm with a claw lowered down on one side to scoop up the rocks, bringing them up and over to drop into a large hopper, with more than enough capacity for all four rocks.

Team 1 presents their design to the class

Team 3 (Conner, Brennan, Isaac, and Tessa) decided to maximize speed and agility above all else. They gave their robot a very simple platform on the front, with a swinging arm to contain a single rock at a time. This meant that they would have to exit and re-enter the circle each time to extract their rocks.

Team 3 shows their simple but fast design

Team 4 (David, Samy, and Belen) went for a longer model with more than enough internal capacity for four rocks. Completely unique to the competition, they designed a “paddle wheel” on the front to sweep the rocks right into the belly of the robot. This all made for more difficult turning, but an efficient collection method.

Team 4 shows the longest design in the competition

Lastly, Team 26 (Todd, Ashlynne, and Deacon) designed a big, bulky robot with both caterpillar tracks and rubber wheels. Team 26 was the only team to employ two computers onboard, to account for their large number of motors. A robot arm reached over the front of the robot to close onto the rocks, before lifting them up into the hopper behind.

Team 26 shows the class their hybrid machine

After a day of presenting and time trials, the students played it out in the gym, with parents and fellow students cheering on. Each team scored at least one victory against someone else, although by the end of the first day, it was clear that Team 3 had an obvious speed advantage. With each round of play, they perfected their technique to get faster and faster!

Mr. Meadth and the crowd look on as Team 26 positions for another run;
Team 4 paddles its way forward unhindered

Brennan and Conner from Team 3 close in on another rock; Todd and Deacon
from Team 26 try to co-ordinate their efforts

Samy from Team 4 takes a turn at the controls while David
and Belen look on

On the second day of competition, the students knew it was time for the eliminations. Team 26 and Team 4 had given the shakiest performances up to this point, although both had won a victory against each other. Fighting for the best of three saw a victory in 1:03 for Team 4, then a victory in 1:15 for Team 26. With scores tied, Team 4 pushed through in their fastest performance yet, with an astounding 0:54. Team 26 eliminated!

Samy, holding three, anxiously waits for the fourth rock to
be collected by David
Ashlynne, having positioned Team 26’s robot, looks on as Deacon steers it
toward the goal

In the next elimination round, the bulkier Team 1 faced off against the more agile Team 3. In a quick series of best of three, Team 3 established dominance, putting their fastest time on the board of four rocks in 0:30. Team 1 put in a valiant effort, but could not keep up and was eliminated.

Team 1 scoops up their second rock in the elimination round
Conner from Team 3 positions the robot as Brennan gets ready to make a run for
the pink rock

The very long Team 4 and the very quick Team 3 went through to the final round, for another best of three. Tensions were high, and Team 4 started off strong. Team 3 went straight into their typical repertoire: run in, grab, get out, repeat. Like a well-oiled machine, Team 3 took home a victory in 0:50. In the second of three, Team 4 came close to victory, but Team 3 once again won with 1:12–notabley, not as fast as Team 4’s best time. However, a third round showed that, without a doubt, Team 3 deserved the grand prize!

Team 4 (left) and Team 3 fly into action in the final round
Already holding two, Team 4 (left) narrowly misses their next red rock, while
Team 3 closes in on the teal one

The winning students were awarded with gift cards and one of the rocks they had fought so hard to collect. Smiles all round, and we’ll see what the Final Challenge had to hold in store next year!

Mr. Meadth congratulates Tessa, Conner, Brennan, and Isaac for a job well done
All the students with their robots at the end of the tournament

Middle School: AIAA Foundation Grant

Much of the funding for our high school Academy comes in the form of grants, generously donated from a wide range of community sources. Our middle school elective is no different. The 7th and 8th Grade students explore a diverse range of engineering topics—structures, gear ratios, sensor technology, and coding to name a few—and they need technology to do it! Our middle school classroom is well stocked with laptops and LEGO Mindstorms EV3 sets to help them accomplish this.

This semester, the middle school elective is pursuing a space exploration theme (this ties in with our Science and Engineering Expo on the 3rd of May, here at the Upper Campus). In keeping with this theme, the students are learning about navigation; specifically, how do you write algorithms that can guide a robot to a particular destination? How do unmanned spacecraft and planetary exploration robots find their way?

For this navigation unit, we needed to supplement our existing EV3 robots with extra add-ons. We decided to invest in infrared sensors, which are paired with small beacons (both pictured). The beacons either act as a hand-held remote control for the robot, or they can broadcast a signal for the robot can home in on. Both modes involve careful crafting of navigation algorithms that make decisions based on sensory input.

The simple Robot Educator, shown with the infrared sensor attached (the
red/black shape mounted in its center) and two infrared beacons

Mr. Meadth is a member of the AIAA (American Institute of Aeronautics and Astronautics), and so was able to apply for an AIAA Foundation Classroom Grant to purchase these needed resources. Twenty different schools were selected for this grant of $250, which is aimed at teachers doing hands-on STEM activities that relate to aviation or aerospace, and we are glad to announce that Providence was one of them. We now have enough sensors and beacons for an entire class—thank you to the AIAA Foundation!

Left to right: Ashlynne, Brennan, and Todd
show the robots, all with IR sensors attached

The middle school students will continue to learn the finer points of using these and other sensors for the rest of the semester. Their final project will be to design and construct their own version of a Mars rover, which will compete in an open-invitation event in early June. We’ll keep you posted on this exciting long-term project!

Don’t forget to follow this blog to get all the latest on the middle school and high school engineering activities, and please send your questions and comments to Rod Meadth at rmeadth@providencesb.org.