When Things Go Wrong, Could You Lend Me a Hand?

There’s a great deal of discussion right now in educational circles about the positive benefits of failure. You don’t have to look far to find TED talks, psychological reviews, and blog articles on why it’s okay–and even beneficial–to fail. Failure, we read, makes us stronger, fights against complacency, and recommits us to our goals. The warnings are shouted loudly: Parents! Don’t shield your kids from failure! Our own faculty member, Carri Svoboda, shared an article earlier this year about why women in particular might be afraid to fail.

The Foundations of Engineering II class in the Providence Engineering Academy were recently given a new project to wrestle with: design and build a robotic prosthetic arm. Using metal motors and controls for the forearm frame, they then had to 3D print a functional palm, fingers, and thumb. No instructions, and nothing off-the-shelf. Oh, and with one more twist–the entire thing was made double size.

James and Zach prepare the Pink Team’s hand

Isaiah and Kaitlyn working on the finishing touches

So what happens when you give a room full of budding engineers a bunch of robotics parts and computers and a 3D printer? Well, for one, a lot of failure. Dead ends and broken components are commonplace. The line of code that worked yesterday doesn’t work today. The team member that needed to design their part in time just doesn’t. Control wires break. Batteries die. Entropy seems to work harder than its usual self.

And that’s okay!

Davis shows Alan his giant metal forearm; the green boxes down
the side are the motors to control the 3D-printed fingers

The teams worked hard for seven weeks. During this time, they also visited PathPoint, a nearby organization dedicated to working with those needing assistive technology–the original inspiration for this robotic limb project. The direct experience with those who daily use technology to overcome their difficulties was very moving.

The whole group visiting PathPoint, non-profit working here in
Santa Barbara with those needing assistive technology

When all was completed, the four teams loaded up into the school vans, and headed over to the San Roque campus. Their giant articulated hands waved a cheery hello to cars driving by, fingers flexing and twitching in eerie mimicry.

Pedro shows the Yellow Team’s code to a
Lower School student

James checks the workings of his pink articulated fingers

The class presented their designs to the 3rd, 4th, 5th, and 6th Grades across two days. On the first day, failure was the name of the game, as every team experienced the frustration of things going wrong. To name just a few of the dozens of problems:

  • A control line connecting a motor to a finger broke or came untied.
  • A stop keeping a finger from bending backward broke away.
  • An elastic band returning the finger to neutral position broke.
  • A remote control, necessary for demonstration, would not “pair” with the onboard computer.
  • Another remote control was left behind in the engineering classroom!
Nolan, chief coding specialist for the
White Team

A myriad of challenges–yes! More importantly, how did the students respond?

  • They switched to manual operation instead of motor-controlled.
  • They took extra time to talk to their elementary-aged guests about 3D printing and robots.
  • They used tape and scrap pieces to rebuild a finger stop.
  • They retied control lines, anchoring them with bolts and washers.
  • They avoided focusing on the problems, and drew their audience’s attention to what was working.
Our 5th Grade teacher, Mrs. Suleiman, shared her highlight of the experience: “Hearing the students talk about the ‘failures’ that happened as they were designing the hands, and watching them deal with problems that occurred during their demonstration.”

Lower School students take a turn wiggling the giant fingers
back and forth with the remote control

The students themselves reflected on this very same idea a few days later:

Pedro: “There will always be failure. Failure is good. You learn from it.”

Zach: “Perhaps it is not our mistakes that are the true failures, but the ways that we handle our mistakes that are.”

Alan: “The point of this isn’t about how many failures we have, but how we deal with them.”

Isaiah: “All this goes to say that every problem has a solution. You just have to be willing to persevere.”

And persevere they did. On the second day of presenting, most of the kinks had been worked out. With smiles on their faces, our 9th and 10th Graders talked at length about their coding and CAD. The elementary students were able to take turns at the controls and wiggle those giant fingers back and forth. What a joy to see older students inspiring the younger ones with warmth and kindness!

Nolan helps our Lower School students
operate the arm

Our closing thoughts come from Sydney (9th Grader), who wrote some powerfully encouraging thoughts for all of us:

“I know that even in my academic journey at Providence, I have failed many times… This seems like the world can end, yet once you rise up and decide to learn from those failures, you really do learn the most… Through the project of making a robotic hand, I understand that failing is normal and is bound to happen at some point… I have learned that I need a team or a group who can help me when I fail. I need to give myself grace when I do fail… I am grateful for this experience and the hand that was our outcome, even if it was losing a few nuts and bolts by the end. Great work, team!”

Robots Head to Head

In the Providence Engineering Academy, we take care of a lot of serious business. We use trigonometry to calculate vector components. We learn how Rene Descartes’ philosophy paved the way for a flawed view of “the ghost in the machine”. We learn how to identify fixed, hinged, and simple supports in typical static structures.

And some days, we just get out there and have head-to-head robot wars!

James gets excited as teammate Nolan drops
one in the bucket!

The challenge: set up a metal remote-control robot to collect as many tennis balls as possible in eight minutes.

The setting: the wooden deck behind Mr. Rottman’s room.

The outcome: a whole lot of high-energy fun! (And possibly some learning along the way.)

One robot encounters the harsh realities of the laws of physics…
a quick flip of the claw and it’s back in the game!

After a week of careful coding, mechanical modification, and practice, each of the four teams was ready to enter The Pit. Programmers had gone over scores of lines of code in search of errors and optimizations. Extra bits and pieces were judiciously selected and bolted on. Optimistic 9th and 10th Graders jubilantly walked their robots across the yard to be tried against each other: head to head to head to head!

What do you do when your claw stops working in the middle
of the game? Teacher to the rescue!

The first round was not without its upsets. The whistle blew, and three robots sprang to life, but Sam’s robot just refused to launch. Mr. Meadth waded through a morass of error messages to find that Sam had inadvertently typed extra characters into his code as he had walked over. A quick fix and back in business!

Sam brought the team back to life despite the time lost, scoring double points along the way to finish with seven total. But nothing could touch Pedro, who expertly picked up no fewer than ten balls!

Joshua places his ball with infinite caution
as Pedro and Sam look on

With help from Claire and Josh, our dedicated senior teaching assistants, the field was reset, and new operators stepped up. After a quick reminder of which buttons did what, the robots roared to life again. Sydney managed to best her teammate’s score from four to five, but no one could touch Pedro’s teammate, Joshua, who matched his performance with another ten!

James steadies the bucket while Caleb
drops another one in–illegal move?

For the final round, the controls were passed to James, Alan, Sam, and Kaitlyn. Kaitlyn managed to score six, which was impressive enough, but Alan beat her out by one to make seven… and James roared from behind to lead his team to a victorious ten!

Sydney and Kaitlyn felt this way after each
and every ball

Well done to all team members! You coded and designed and built and redesigned and rebuilt. Well done on working together towards the end goal. Final scores are as follows:

Round 1 Round 2 Round 3 Total
Davis 4 Sydney 5 Kaitlyn 6 15
Pedro 10 Joshua 10 Sam P. 4 24
Nolan 5 Caleb 4 James 10 19
Sam K. 7 Zach 2 Alan 7 16

Well done to Pedro, Joshua, and Sam, winning two out of three rounds and getting the highest cumulative score overall. Our next major robotics project will turn our attention to more sober-minded matters. How can robotics technology be used to help the weak and unfortunate? Stay tuned to find out!

Guessing Games and Plywood Furniture

The first couple of weeks are already under our belt, and we are off to a good start in the Providence Engineering Academy! This year, we have ten determined engineers-in-training in the older group, and thirteen in the younger. The older group will spend the year studying statics—the science of things that don’t move—and the younger will be learning the ins and outs of both robotics and mathematics.

Both groups started off the year with a simple exercise to test their divergent and convergent thinking skills. Mr. Meadth had a 3D-printed model of an well-known mechanical device hidden in a box, broken down into its twelve constituent pieces. The device was unnamed, but the students were assured that they were very familiar with it, and that there were several such devices in the room all around. He brought out the pieces one by one, and after each new piece was revealed, the students set about guessing what the device could be.
Congratulations to Pedro and Alena! (And also to Claire, who learned not to second guess herself!) After only four of the twelve pieces were revealed, they correctly guessed the identity of the complete device. Sound easy? Here’s the four pieces they had in front of them when they guessed correctly. Don’t scroll down too far unless you want the answer!
Each of these little red prisms are about half an inch tall in actual size
What could the entire device be?
Give up yet?
Scroll down…
If you guessed that the complete device was a lock and key, well done!
The four prisms are on top, called the driver pins
There’s even more going on inside!

In their respective classes, Alena’s and Pedro’s prize was to build the device up from its twelve pieces, without any help from the teacher. With cheering and suggestions from their peers, Alena and Pedro were successfully able to get it all together in time!
Alena fits the pieces together in the new Room 102
There’s plenty more going on since then. To get warmed up in their “study of things that don’t move”, the Advanced Engineering I group is working in three competitive teams to produce a new piece of classroom furniture for Room 102. All three teams settled for variations of plywood lecterns (not podiums—sorry if you’ve been misusing this word). We look forward to seeing what emerges over the next couple of weeks.
Colby, Gabe, and Todd work together on their piece of modern art;
the purchased plywood patiently awaits!
Stay posted for updates on the furniture, and to find out just what it means to study robotics in the high school program. (Hint: we aren’t fooling around with LEGO anymore!)

Summer Camp 2018

It was such a roaring success the first time that we just had to do it all over again! The second annual Providence Engineering Summer Camp finished today, and the brightly lit robot city took wings with our special theme: SPACE. We all know it’s the final frontier, and our fifteen campers interpreted this idea in a multitude of ways. Alien invasion… meteorite shower… rocket launch… solar system buildings… 3D printed rockets and planets… so much fun!

Todd helps his team with some simple geometric designs

High school engineering students Joshua, Todd, Alena, and Sam led the charge each day teams of devoted campers from Providence and the broader community. We also had a good deal of help from Isabela! These excellent engineers taught the campers how to build electronic circuits, program robots, 3D print fantastic creations, and design out-of-this-world architecture. Illuminated buildings towered high above the cityscape as tiny robots darted to and fro. Electrified copper rails ran this way and that carrying power to critical components, with printed sculptures dotting the landscape.

Success! A single 3 V coin battery powers nine blue LEDs…
or is it only eight?
There was no messing around, either—these elementary students learned their stuff! You can ask them what “LED” stands for, and what a “forever loop” might be used for. They know how to build a working switch out of paper and copper foil, and some of them even used their movie-making skills to record short action videos!
The Robot City landscape continues to become
increasingly illuminated
As the days went by, the creations became increasingly complex. First was the skyscraper that was literally taller than Mr. Meadth. Then came the red/orange/green traffic light by the illuminated airstrip. 3D printed costumes were designed (by the campers, of course) for the tiny Ozobots in the shape of cars, rockets, and trains. And—of course—there was the obligatory fiesta of robot dance parties, all happening in perfect synchronization.
A delightful blue flower stands bold and tall
The end of each day came all too quickly. With lots to take home, we hope these happy campers will continue to code, invent architecture, and design circuits all summer long! Enjoy the rest of the photos, and we hope to have as many of you as possible back next year!
The 3D CAD model (computer aided design), becomes—by magic!—
a brightly lit reality
A tall rocket stands beside a crashed alien spacecraft
Our campers working hard to create all manner of new buildings
The tallest skyscraper in the room, complete with embedded
meteorites and emergency beacons
The Copper Rocket throws an eerie light out onto the empty streets

The giant completed city!

MS Final Challenge: Flawless Victory!

A new record was set this semester, with the biggest group ever signing up for Intro to Engineering in Room 202. The eighth cohort to take this class, they were full of excitement as they spent the last four weeks of class designing and building a LEGO robot to respond to Mr Meadth’s latest Final Challenge.

In some ways, this was the most difficult challenge yet: the robot would be placed in a square walled ring, collect a colored item, and deposit it outside of the ring. Sound simple? To scoop up a smooth plastic object on a smooth wooden floor and get it over that mere 3.5″ of height is far more difficult than it sounds! How does the robot know when it has the item in hand? How can it lift it up? How to release it? Should it be able to steer? How does it know when it hits the wall? Will it behave the same way every time?
The game area: an 8 ft wooden square, with 3.5″ high walls; five
items were scattered for collection and removal
Mr Meadth’s advice to the students was plain: the robot that won this competition would be fast, simple, and reliable. Fast: this is a race against the clock, with only 30 seconds to beat the other robot in the ring. Simple: every additional moving part is one more thing that can go wrong. Reliable: it must do the same predictable thing time after time.
Left to right: Zach and Sam show their formidable forklift machine
After the last frantic rush of finishing work, eight complex machines lined up to take the floor. Bedecked with an impressive array of forklifts, scoops, and shovels, the robots stared each other down with baleful red eyes (ultrasonic sensors, actually, but the lure of personification is hard to overcome!).
Ruby and Brooklyne’s robot finds its way into the corner, missing
the yellow item by a whisker!
After an intense Friday of preliminary rounds, it was clear that one team’s robot stood out head and shoulders above the rest; Emma and Donna’s machine was indeed fast and reliable. Spearing the item every time, undefeated in every round, they were placed in pole position. Honors also went to Avala and Isabela, who did excellently on the first day.
Left to right: Emma and Donna sit proudly after another
winning round!
Emma and Donna (rear) narrowly beat out Avala and Isabela
Teams were given a chance over the weekend to regroup. Any programming or mechanical fixes could be carried out, in time for the elimination rounds. Several teams took advantage of this, and fine-tuned their bot in the hopes of gaining victory.
Left to right: Masa and Ma.kaha pause for the camera while the
competition rages on behind them!
On the big day, it was made clear once again just how challenging this task was. Several teams did not score even once—it really is that hard! Many teams found their robot just didn’t know when to lift the item over the wall. The lesson was hard learned: a robot is utterly deaf, dumb, and blind except for proper sensors and programming.
Left to right: Isaac and Josiah carefully plan their attack vector
After several rounds, Emma and Donna once again distinguished themselves as undefeated at the top of the pack. Avala and Isabela also scored solid victories. Josiah and Isaac also scored a victory, as did Sam and Zach. Caleb and Harry deserve an honorable mention; in the last round they were finally able to remove an item from the field… but it hit the ground a quarter-second later than their opponent!
The semi-final was swift and to the point. Emma and Donna maintained their winning streak by pushing Avala and Isabela out of the competition. Isaac and Josiah beat out Sam and Zach and advanced to the final round.
Would Emma and Donna meet their final match? Sadly for the boys, not this time, and not ever! In an astounding display of consistency, the girls won yet again—with a personal best of 4 seconds—while the boys swung wide and missed the target altogether. Flawless victory!
The final victory! Our photographer Isaiah captures the winning
moment an instant before the item hits the ground.
As always, congratulations to all participants, and to the many parents, staff members, and friends who came out to see the competition across both days. We were thrilled to have you, and we look forward to seeing what the next Final Challenge will be.
From left to right: Caleb, Harry, Zach, Josiah, Zach, Isaac, Brooklyne,
Ruby, Avala, Isabela, Emma, Donna, Cameron, Alan, James, Ma.kaha,
Masa, Isaiah, Sydney, Abby, Mr Meadth

Gliders Launched!

There was a mixture of feelings in the Advanced Engineering II class last week, as they put the finishing touches on their gliders. These thirteen students had conceived, planned, and brought forth finely-tuned creations over the past nine months. The thought of now—literally—throwing them to the wind was somewhat concerning, to say the least.

Aaron throws his team’s glider from the roof to the field

Aaron, Caleb, and Megan had worked on a design with the shortest length from nose to tail, which resulted in the lowest weight of all four teams: 281 grams (a bit more than half a pound). They pulled cellophane over 3D printed ribs to create an aerodynamic lifting wing, and they opted for a balsa tail and body, connected by two carbon-fiber rods. Their team was also the only one to decide against undercarriage, relying instead on the rounded fuselage itself to land safely on the grassy field.

In total, this smooth sailplane made about four throws, with some repairs along the way! Sporting flashy silver and gold control surfaces, they reached a maximum distance of 68 ft. It also bears mentioning that the cumulative report with the conceptual and detailed design, plus appendices, came out to a whopping 23 pages. Well done!

Megan, Aaron, and Caleb standing proudly

Kylie, Luke, and Josh had the great honor of building the largest plane, dubbed by some The Spruce Goose. Click here for some serious aviation history behind that name! With a wingspan of 100 cm, a chord length of 22 cm, and a total nose to tail length of over 80 cm, it took to the air for an historic maiden voyage, with Luke at the helm.
Unfortunately, things did not fare so well for this 502 gram glider (a little more than 1 lb), which only made it 17 ft out into the field. Mr Meadth also tried his hand at throwing this one, but this was hampered by some sticky undercarriage. The good news is that the egg onboard was well protected!
Kylie proudly holds the Goose aloft

Luke, showing some signs of stress before the big throw

Left to right: Colby, Mikaela, Tys, Victor, Luke, Kylie, and Josh
Next in line was the Banana Grinder, so named in honor of some typographical errors early on in the design process. Tys, Mikaela, Victor, and Colby also chose to pull cellophane over printed ribs, but decided to rely heavily on the CAD skills of Tys and Colby to construct many other components of the aircraft, resulting in a high construction precision.
Colby and Tys did great work on matching the CAD model
to the real thing

The team worked powerfully together to build a sleek-looking machine. Others commented on the slender, low profile, the extensive use of carbon-fiber rods in wings, tail, and body, and Mikaela’s cover page artwork! The Grinder’s best launch took it an impressive 60 feet.

Colby waits for the wind to pass before making the throw

Our final team boasted several different features not seen on any other glider. Blue Wonder was the only glider to have a dihedral angle (where the wings slope upwards), it was the only one with a T-tail instead of conventional, and it had the longest wingspan of 120 cm, resulting in the highest aspect ratio. Aspect ratio is a comparison of the wingspan to the wing chord. The students had been taught in class that a high aspect ratio would lower the induced drag. Other teams had aspect ratios around the 4 to 8 mark; Blue Wonder was 12.6.

Eva, Gabe, and Claire also made extensive use of 3D printing and carbon fiber, much like Banana Grinder. Finally, they chose to skin the wing with tissue paper soaked in dope (a kind of glue that dries hard and pulls the paper tight). This resulted in a smoother, tougher lifting surface compared to the cellophane. Click here for the CAD model of their components.
The completed 120 cm wing and T-tail (not yet skinned), connected
by a carbon-fiber rod
It is an unfortunate fact of history that the maiden voyage of this aerial acrobat was a complete disaster. After several successful short-range tests, Gabe hurled the machine into the air… only to have it bank around to port and crash violently into a row of bleachers! With a total distance of only 4 ft and a broken tail, Claire brought out the masking tape to get it ready for another flight.

Gabe hefting the Blue Wonder down on the ground

A second throw left the crowd speechless, as the Wonder curved gracefully into the breeze. After gaining a dozen feet of altitude, it swooped down across the field, showing none of its port-side tendencies, and landed smoothly at 97 ft! Gabe and Mr. Meadth were both able to make a few more flights just as successfully before a few rough landings left it crippled and grounded like the others.
At the close of the experiments, Victor commented that he would never look at an aircraft the same way again; he now sees the c.g. and the balance and all of the work that went into it. And needless to say, Eva and Gabe and Claire were glowing with pride.
So—what was learned?

  1. It is better to have high accuracy construction, which 3D printing perfectly lends itself to.
  2. A dihedral wing angle really does promote roll stability.
  3. The planes’ distances were directly linked to their wing aspect ratios (how slender they were).
  4.  Lighter planes flew further and better.
  5. The doped tissue paper seemed to lower the drag compared to the cellophane.
  6. Carbon fiber really is as awesome as it sounds.
With only a few weeks of school left, the students are now turning their attention to a special project, funded by a grant awarded by the EnergyPartners Fund. Broken out into five new teams, they are assembling electronic components for a quadcopter drone. They will design and 3D print the body of the drone, holding all the pieces together. More to come!

Gliders: In Production!

A quick update on our Advanced Engineering II glider project: the students are currently hard at work translating their theoretical calculations into hand-made reality. The problem is at first daunting; how do you create the various parts of a flying machine, according to a specific design? There are dozens of materials that might be chosen for each component, and the production needs to be accurate enough and cheap enough and quick enough and repeatable enough!

Aaron lines his twenty ribs carefully
in place, ready to glue

All teams have settled on a 3D-printed rib-and-spar design for the wings, although the exact rib profile varies in size and shape. All teams are using carbon fiber square tubes for the spars (the long beams that run through from wing tip to wing tip). Some teams are planning on skinning their wing with cellophane, and others are planning on tissue paper and dope (a kind of glue that tightens and hardens the paper).

Kylie and Josh and Luke are producing
the largest, thickest ribs of all teams
(sounds delicious, in fact)

To see some interactive CAD models that Tys and Mikaela and Colby and Victor are working on, click here.

Other components, such as the undercarriage and fuselage and tail, are being made from 3D-printed parts, balsa sheets, more carbon fiber, and even colorful pipe cleaners.

Victor, Colby, and Mikaela go over the particulars of their CAD
model with Dr. Nathan Gates, retired aerospace engineer

Megan and Caleb receive valuable
advice from our classroom mentor

To help with the design process, we asked retired aerospace engineer Dr. Nathan Gates to visit our classroom. Dr. Gates moved around the different teams to consult with them. Each team explained their design, and received valuable feedback as to their construction plans. Dr. Gates’ area of expertise was structural mechanics; he was doubtlessly overqualified for this role!

Proud Providence alumna Willow looks over Gabe’s and Eva’s
wing design

To further sweeten the deal, we also asked Willow Brown, Providence alumna (2015), to come by on the same day. Willow’s sister, Kylie, is on a team with Luke and Josh. Willow is currently studying mechanical engineering at Loyola Marymount University. Did this give Kylie and her team an unfair advantage? Only time will tell.

The maiden voyage is fast approaching, so watch this space. There’s more coming up later this year, too—students will design, print, and build quadcopter drones. Stay posted, and thank you to Dr. Gates and Willow!

In the Steps of Orville and Wilbur

The Advanced Engineering II group has a unique and challenging task in front of them. In fact, it is quite possible that none of the students has ever undertaken something quite like this: a group project that lasts from September to March—designing and building a model glider!

The students have been hard at work learning the fundamentals of aerodynamics, as applied to conventional aircraft. They understand Bernoulli’s principle, the momentum shift theory of lift, what induced drag is, and why most modern aircraft have those little turned-up ends on their wings. They know the value of the theoretical lift curve slope, and how much lift an uncambered airfoil produces at a zero angle of attack, and they can check it all in a virtual wind tunnel test! Impressed yet?!

Luke (11th) and Kylie (12th) consult their extensive course notes
as they work on the detailed design spreadsheet

Divided up into four teams, the students have just put the finishing touches on their complex design spreadsheet, which describes in precise detail the various features of the glider they are going to build. Each glider will be thrown from the top of the science lab building onto our field, carrying a single (unboiled!) egg to safety as far downfield as possible. The plane that successfully flies the farthest and lands safely wins!

Tys (12th), Victor (11th), Colby (11th), and Mikaela (12th) happily
nearing the end of their design calculations after several weeks

The students will be using a variety of materials and techniques; we are currently amassing a stockpile of carbon fiber tubes, balsa wood pieces, tissue paper, cellophane, lead weights, aluminum wire, and other bits and pieces. The teams are creating CAD models of their wing cross-sections, intending to 3D print them in the coming weeks. Most of the gliders are about three feet across the wingspan, about two feet long, and weigh a bit more than half a pound. (By the way, all of our work is done in metric units, to be in keeping with international physics standards!)

In order to get a real hands-on feel for the work, the group also took a special visit up to the Santa Ynez Airport, where they were shown a variety of gliders and powered aircraft. This was the perfect chance to connect theory to practice, and it no doubt helped inspire the students as they move into the manufacturing phase.

Josh and Gabe look at the cockpit
of an older glider

Dave and Colby, employees of the airport, graciously showed us around the couple of dozen light aircraft sitting on the runway, answering student questions about wing design, gliding techniques, and the pilot license process.

Megan and Caleb dreaming big as they stand by another one of
the gliders
The students look on as Colby describes the sleek and elegant
Cirrus light aircraft


As more airplanes took off and landed around them, the students got up close views of a shiny Cirrus, many older Cessnas, and an unusual-looking Long-EZ. Colby described to us the great thrill of flying, being in perfect solitude up in the sky; he is working towards his powered pilot license.

Is it a spaceship of some sort? The Long-EZ design is not
recommended for the students to imitate for their glider design

The class’s six seniors from left to right: Tys, Mikaela, Caleb, Megan,
Aaron, and Kylie; our guide Colby on the right
With plenty to fill their heads about glide paths, turbulent flow, night navigation, wing construction, parachutes, and fuel pods, the students took one final pose on an aircraft they were allowed to sit in! Thanks very much to Dave and Colby and all of the crew up at Santa Ynez—perhaps we’ll see you again sometime soon! Airport Day is coming up on Saturday, May 20th, and all are welcome.

MS Engineering: The Final Challenge!

Wow! What an incredible display of robotic strength and fortitude! Mr. Meadth would like to thank all of the eighteen middle school students who worked so hard and waited so long to show their programming prowess. Many thanks also to all of the many parents who came to watch.

Mr. Meadth watches for adherence to the rules of competition
as Kassy and Miranda head off against Tzevon and Mark
Tully and Dennis make the final checks as Audrie and Jeffry
prepare their program

Miranda and Kassy with the biggest, blockiest
bot of them all!

After a gripping round of preliminaries, it was clear that Jon and Ella were not to be beaten, consistently needing only 43 seconds both times to get all three cubes in the goal. Ryan and Gideon zoomed down the line with double wins, as fast as 37 seconds. Kassy and Miranda took it slow and steady, but won both matches with an average of 2:19. A special qualifying round also put Liza and Kaitlyn through with their prize horse, with a record-breaking 18 seconds!

Tully and Dennis proudly showing their machine

Ryan and Gideon were very proud of their
geared-up racer
In the elimination round, Liza and Kaitlyn beat out Jon and Ella with a lightning-fast 21 seconds. The secret? High speed gear ratios, where Jon and Ella stuck to direct drive. And in a stunning upset, Ryan and Gideon lost out–despite their high speed gears–to the perfectly consistent Kassy and Miranda, who beat their previous times by over a minute!
Mark and Tzevon designed a conveyor belt to
get their cubes in the box

Jeffry and Audrie went for the “tall tricycle” design

In an all-girl final round, Liza and Kaitlyn made the first drop. But they fumbled the second, and Kassy and Miranda faithfully dropped theirs in the box to equal the scores. A couple of unforced errors, some bouncing out, and the scores were again tied at two all! In the end, however, nothing could stop the speed and accuracy of Liza and Kaitlyn, who wrapped it all up with an impressive time of 49 seconds! Well done, girls!
For more photos and videos, students can use their Providence Google accounts to check out Miss Hurlbert’s online folder, here.

From left to right (rear): Mr. Meadth, Gideon, Jeffry, Audrie,
Kassy, Miranda, Liza, Kaitlyn, Ella, Lily, Paul, Angel
Front: Jon, Evan

MS Engineering: A Photo Update

The MS Engineering students just finished their penultimate project: to build a “stock” model according to instructions, and then to program it themselves to get it to work. This is a warm-up to their final project, which sees them build and program their very own robot in The Final Challenge without any instructions or other assistance.

Enjoy the photos, and feel free to browse our other articles, most of which are focused on the high school Academy. Send your comments and questions to us at rmeadth@providencesb.org.

Ryan and Mark show off their Znap, which moves around in
random directions, snapping at anything that comes too close;
apologies for poor photography!

Gideon and Kaitlyn built a challenging Elephant, which walks
and picks up items with its articulated trunk–very impressive! 

Dennis and Tully also put together a Znap, and learned a lot
about the importance of distinguishing between sensor and
motor ports!

Kassy and Liza (absent) also built an Elephant, which had an
impressively choreographed trunk routine complete with sound
effects; we also wanted to see if it could tip over one of the
puppies 

Evan and Angel built the only Robot Arm H25; it is something
similar to a factory assembly robot, picking up and releasing
objects within its reach

Jonny and Ella put together the only Stair Climber, which was
able to successfully climb the pile of books pictured 

A (mostly) successful earlier test run of the Stair Climber

Tzevon and Paul with their own Elephant and its unique slow-
motion dance routine

Audrie and Miranda consider their robot Puppy–almost as
troublesome as the real thing! 

Jeffry and Lily describing some of the challenges of just getting
their Puppy to stand and sit–who knew it would be so much work?!