Designed, Built, Flown!

You can’t choose the hand you’re dealt, but you can play it to win every time.

Along with every one else around the globe, the Providence Engineering Academy was dealt a tough hand in March. Having worked so hard in the lead-up to the major capstone project—to design, build, and fly a powered tethered aircraft—being asked to complete the project from home was not the situation that anyone wanted. But in the spirit of problem-solving, our junior and senior engineers faced up to the challenge. After all, what is engineering all about if not solving problems?

Our last post on this project ended with the four teams designing various aircraft components using professional-grade CAD software. They had sent their designs to Mr. Meadth, who began to 3D print their fuselages and tails, cut their carbon fiber, and CNC mill their wooden wing ribs, all from the comfort (?) of his garage.

The garage workshop: where the magic happens!

Over the course of several weeks, each team’s delivery bag in the garage began to pile higher and higher with these manufactured components, along with advanced electric motors, lightweight lithium batteries, tissue paper, and other bits and pieces. Every last one of these components had been accounted for in duplicate: in a virtual CAD model and a complex spreadsheet. The CAD model held the actual design for manufacture, visualization, assembly guarantee, and mass/center-of-gravity prediction. The spreadsheet calculated wing and tail lift, which in turn yielded a force and moment balance, and also a redundant center-of-gravity prediction. (Redundancy is not a negative word in aircraft engineering!)

Quick science lesson: the center of gravity (c.g.) is where the sum of all weight is located. In other words, it’s the point at which you could balance the aircraft on your finger, or where you could hang it from a string. It is determined by the masses and locations of the individual components, and it was critical that our uncontrolled aircraft had the center of gravity forward of the wing’s lift force. Without going into the deeper explanation, having the center of gravity as close to the nose as possible means that the aircraft will be self-correcting and stable as it flies. Try attaching a paperclip to the nose of your next paper aircraft and note the dramatic improvement! This is why we ran two separate c.g. calculations using two different method—we wanted to absolutely confirm before manufacture.

Fresh off the printer, ready for delivery!
Sam and Josh work on RUBYGEM, papering and
doping the wings

Mr. Meadth delivered each team’s bag directly to their respective homes. Upon arrival, each team worked hard to assemble the aircraft. This involved inserting carbon fiber spars into 3D printed wing boxes, stringing the wooden ribs evenly along the spars, covering the ribs with tissue paper, and then applying dope (a kind of water-based glue) to the paper. The doped paper dries and hardens into a kind of thin shell. The various electronics components were also connected and secured, along with the tail and undercarriage (landing gear).

At the same time, the simple tethering system had to be designed and implemented. The wooden stand sits in the middle of the flight path, and a 3D printed bearing served as an anchor point for the tether line. The tether was then attached to the wingtip. Some of the aircraft needed a little more rigging to ensure that the centripetal force didn’t rip the wingtip loose!

Fast forward to the big day. Mr. Meadth made a final decision to hold the test flights in the gym, instead of outside. The smooth floor would take one more variable out of the equation, and the enclosed space would keep out any stray gusts. When your plane only weighs about 2 pounds and floats on the breeze, a gentle wind can be your worst enemy!
Thanos steps on to the court!
First up to the plate was Nolan and Pedro. Their purple and grey monoplane had a planned weight of 800 grams (less than a liter of water). The wingspan was a fairly standard 1.06 meters (a bit more than 3 ft), with a conventional tail style and taildragger undercarriage. Mr. Meadth tied their aircraft to the tether as the excitement mounted, and Pedro took the first turn at the controls. A gentle increase on the electronic throttle, and the affectionately named Thanos rose up beautifully into the air! Nolan took a turn as well, and the team scored two successful take-offs and two successful landings—the ideal outcome!
Plan view of Thanos, taken from the CAD model
Next up was Madison and Alena. Their Airplane Baby was ready to take its first steps, with Alena at the helm. In various shades of baby blue, the 540 gram winged wonder stretched out at an impressive 1.2 meter span (about 4 ft). Their wing aspect ratio (the ratio of wingspan to chord length) was a very healthy 12, almost double that of some other teams. But would it fly?
Airplane Baby gets ready to roll!

The girls produced a set of plans for their
written report
Without a doubt! Both Madison and Alena toured the gym in a somewhat rollercoaster fashion, the tether line being stretched to its limit. We estimated just a couple of feet clearance between the aircraft and the walls—enough to make any pilot sweat a little! But after a safe landing, all was well.
And now a little math. Replaying the video, it looks like Airplane Baby took about 3.5 seconds to complete a lap. If the diameter of the circle was about equal to that of the basketball court (50 ft), then the radius of the circle was half that: 25 ft. The speed of the aircraft through the air is equal to distance over time; the circumference of the circle divided by the time to get around that circle.
Circumference = 2π × radius = 157 ft
Speed = distance/time = 157/3.5 = 45 ft/s
This was about 36% faster than their design speed of 33 ft/s, which only goes to show that their stable aircraft design works just as well under a variety of situations. (It may also mean that their wings weren’t as effective at generating lift as theorized!)
Sam and Joshua took to the floor after that, with a slender red aircraft tied to the tether: RUBYGEM. With a planned mass of 440 grams (almost exactly one pound), this was the lightest plane on display. Their rectangular wing planform spanned 1.08 meters, and they planned to fly at only 8 meters per second (26 ft/s). A lighter aircraft does not need as much lift to stay in the air, and so for any given wing design, it can fly slower and still generate the force it needs.
RUBYGEM steps out in style
As RUBYGEM gracefully lifted into the air, it was obvious that she indeed favored a slower style of things. Completing each lap in almost 5 seconds, the flight speed can be calculated at 33 ft/s. This is also faster than their design speed, which reinforces the theory that perhaps there is more inefficiency in the design than our theory accounts for. Sounds like real life, all right!
After successful landings, Mr. Meadth made the decision to head outside with the fourth aircraft: Big Wing Boy. And boy, was it big! At over 2 meters (6.5 ft) span, this multi-colored monoplane was just too big to spread its wings indoors. It was also designed to fly a little slower, and was very light for its size: 800 grams.
Big Wing Boy, taken from the design report

There was, however, one significant issue: while the design looked good in the CAD model and spreadsheet, the greater spans and sizes meant the physical attachment of the parts was just that much more difficult. The sheer size tended to stress the wing root joints more, so extra tension lines were strung between wingtips to help hold everything together.
Being outdoors on the grassy field, the decision was also made to give the aircraft a running hand-held start, because the wheels get caught in the grass. Risky? Yes! Mr. Meadth held Big Wing Boy aloft and kicked off his shoes to get the best launch speed possible. Given that an Olympic runner travels at around the 10 m/s mark, finding the necessary design speed of 8 m/s would be a challenge!

Ben cranked the throttle to a healthy roar, and Mr. Meadth began to dash around the circle. With a final push into the air, B.W.B. lifted up into the great blue yonder where he belonged. All seemed well… and then the unthinkable! Video footage analysis confirms that the carbon fiber stick connecting the wings to the tail tore loose from the aerodynamic loads, and no plane can ever do well without that stabilizing influence. This principle was, in fact, one of the central pillars of the second semester!
The moment of horror as the tail comes loose!
The aircraft wanted to perform, but just couldn’t remain aloft. It plowed into the grassy field after only a few seconds of genuine flight. A quick repair and a repeat attempt was launched shortly thereafter, but another half-lap was achieved with similar results—with more permanent destruction this time! There was no third flight.
At the end of the day, what did we learn?
  1. Challenges are there to be overcome. The project could have modified to be easier, simpler, more virtual, you name it. But that kind of logic doesn’t get you into the history books, and doesn’t give the same kind of satisfaction. Greater levels of determination can turn challenges into victory.
  2. Theory is useful, but doesn’t account for everything. Math and physics equations and computer simulations are incredibly useful, and with high-level manufacturing can be a very good analogy of the intended outcome. But the fact is that our theoretical calculations didn’t account for a great many factors. This makes it all the more important to create robust, stable designs. The aircraft didn’t perform exactly as intended, but they did perform in the real world.
  3. Aircraft need firmly attached tails. You may want to check the welds next time you hop on board your next 737.
Congratulations to our eight aircraft engineers, and many blessings on the four seniors, now alumni: Ben, Todd, Alena, and Madison. You have completed something to be proud of!

Design, Build, Fly!

Our students can’t be together in person right now, but nothing is going to stop them finishing the capstone design/build/fly project for the 2019-2020 year. With digital tools in their hands and computer-controlled manufacturing equipment at the other end, our budding engineers, now sheltered in place, are experiencing the reality of a modern workflow. Even before the advent of COVID-19, many companies routinely collaborated from around the globe, producing advanced designs using international teams. Although not our first choice of preference, we’re taking the challenge head-on!

Mr. Meadth teaching aircraft stability via Zoom
The first step for our skillful students was to learn the ins and outs of classic aerodynamics. In January, February, and March, the eight juniors and seniors studied airfoil behavior, lift and drag equations, and learned how to use weighted averages to find the center of gravity of a complex system. Our team learned the different parameters of airfoil design, and used virtual wind tunnel tests to predict just how those airfoils would respond in real life.
The virtual wind tunnel program XFoil: a classic
historical aerospace simulation! Note the cambered
airfoil shape at the bottom, with the yellow boundary
layer on top and the blue one below
Even more important was the notion of stability. What makes some physical systems stable, and others unstable? The incredible hexacopter drone that emerged in the first semester was inherently unstable, which means that it will rapidly flip and roll and fall out of the sky if the onboard computer-controlled gyroscopes were to stop doing their job. The gyroscopes sample the position and orientation of the drone dozens of times per second, and send minor corrections to the six motors, all without the pilot on the ground ever knowing it. Stable drone flight is an astounding human accomplishment, powered by calculus and implemented by technology, but it is not inherently physically stable.
On the other hand, the powered fixed-wing aircraft in this project must be physically stable. Tethered to a central post and flying continual circles, the aircraft will have only one remote-control channel controlling the power to the motor. There are no ailerons, elevators, rudder, or flaps. Without moveable control surfaces, the aircraft must be designed to constantly self-correct all by itself. If the nose dips down a little because of a gust of wind, it must automatically seek to find level again. If it rolls a little too much to one side, it needs to roll back again. The principles involved hold true for most common vehicles: cars, bicycles, even the caster wheels on supermarket carts.
Having mastered the physics involved, the students set about the difficult task of starting their design. No kits, no instructions, no fixed starting point! In teams of two, the students created a complicated spreadsheet filled with graphs and tables and physics equations, listing masses and locations and forces and moments. The students also designed a multi-part CAD model according to those numbers using the professional-grade online platform Onshape; ideally, the CAD model, the spreadsheet design, and the manufactured plane itself will end up as three matching representations of the same reality.
Pedro’s and Nolan’s aircraft in its complete form
The same aircraft in an exploded view
Mr. Meadth ordered in the necessary tools and materials for construction: carbon fiber bars and tubes, balsa wood, lithium-ion batteries, electronic speed controllers for the advanced motors, propellers, wheels, and filament for the 3D printer. These materials were fully paid for by a generous grant from AIAA, the American Institute of Aeronautics and Astronautics. AIAA believes strongly in encouraging the work done by K-12 schools in advancing aerospace education, and Providence School has received similar grants in the past.
The delivery of the critical
components arrives!
Through the COVID-19 distance learning experience, the four teams produced their designs without ever meeting in person with each other or the teacher. Because of Zoom lessons, shared spreadsheets, and the powerful collaborative nature of Onshape, this project didn’t skip a beat. Mr. Meadth set up a manufacturing station in his own garage, and busily set to work producing what the students had designed. The CNC (computer numerical control) machine carved out flat balsawood ribs with exact length, thickness and camber dimensions, and the Raise3D 3D printer produced the three-dimensional components such as fuselages and tail.
The Providence Engineering Academy
manufacturing facility!
A completed wing rib from Ben and Todd, with
carbon fiber spar inserted
The vertical tail for Nolan’s and Pedro’s aircraft,
over nine hours in the making!
The huge 30-hour print of the fuselage/
wing box (lots of temporary support
material can still be seen

Ready for clean-up, delivery, and assembly! The
motor and one propeller option are in the background

Where to from here? The Advanced Engineering II students will receive deliveries of their manufactured pieces, to be assembled at home. Test flights, possible redesigns, and the final maiden voyages are scheduled to happen in late May—stay posted for the culmination of this exciting story!

Summer Camp 2019

This summer, the Providence Engineering Academy once again hosted the very special Robot City summer camp. With assistance from four capable high school engineering students (Alena, Davis, Pedro, and Zach), Mr. Eves and Mr. Meadth put on an unforgettable experience!

(Please note that all photos in this article have been selected to avoid showing camper faces, since not all students are from Providence with a photo release. Apologies if you’re looking for your loved one’s smiling face!)

Day 1: Architecture
After breaking into four teams, each group selected the theme for their quadrant of Robot City. The Green Team chose Time Travel, the Blue Team settled on a Medieval Castle, the Yellow Team laid out an Alien Attack on the Beach, and Red Team was Future City. A quick lesson of folding geometric nets, and all campers from 3rd to 7th Grade were ready to build!

The skyline emerges! A colorful mess of card and tape!

Red Team’s skyscraper went up and up and up, and needed to be
tied down with guy ropes!
Blue Team’s “Nice No-Trap Castle”. Should we believe them?

With inspiring challenges like “Tallest Tower” and “Most Colorful”, each team worked hard to lay out their cities. Skyscrapers rose up six feet into the air, zip lines were strung out, and spaces carefully divided out.

Day 2: CAD and 3D Printing
It might sound complex, but physically printing CAD (computer-aided design) models is something within the reach of any elementary student! Mr. Meadth taught the campers how to use Tinkercad, a free in-browser design tool created by AutoDesk. Designers can use simple shapes such as cylinders, cones, spheres, and prisms to create more complex models, such as houses and rocketships and characters.

Two of our campers work on their CAD models (Owen’s model
on the right is shown in detail below)

This is a great tool to get kids thinking in terms of linear dimensions, negative and positive space, perspective, volume, and it’s just plain creative fun! Here are a couple of examples of what the kids came up with. We also had spaceships, tanks, flying cars, and castles. Wow!

Once created (the models above took the students less than an hour to build), the designs were sent to the 3D printer. At a small enough print size, most models were done in about an hour, in a range of colors. Of course, after the camp the students got to keep whatever they have printed!

It’s just as addictive as watching TV, but at the end of the program
there’s actually something to show for. Thanks, Raise3D!

Day 3: Electrification
Always a favorite! Mr. Meadth gave a quick lesson on simple circuits, explaining terms such as “LED”, “voltage”, “series”, and “parallel”. Each team was given a supply of copper tape, coin batteries, and LEDs, and shown how to connect them together to power their city. It wasn’t long before the entire room was lit up with red, blue, orange, white, and green!

A lovely beach paradise in the shadow of the skyscrapers
(the tidal wave was added later)

The Green Team’s time travel zone included some helpful signs
(because time travel can be confusing)

A scale replica of the Golden Gate Bridge, courtesy of Abigail

All teams took up the extra challenges as well, building working paper switches, including both series and parallel circuits, and working to match their lighting arrangements to their theme. Blue Team created “laser traps” for their medieval castle, and Green Team strung out a long neatly-lit road to mark out their different time travel zones. Billboard were illuminated and “stained-glass” windows lit from the inside.

Mr. Eves works on the Blue Team’s medieval quadrant
LEDs don’t come through well in photos, but you get the idea!

When parents arrived for pickup on Wednesday, the lights went out, and the party started!

Day 4: LEGO Robotics
What’s a Robot City without robots? This year, Mr. Meadth and Mr. Eves guided the campers on how to incorporate LEGO Mindstorms robotics sets. Rather than creating robotic systems that would move around (and potentially destroy delicate buildings and circuits!), the teams focused on stationary mechanical systems. Mr. Meadth gave some lessons on essential mechanical systems (bevelled gears, gear reductions, universal joints, cams and cranks, etc.), issued some fun challenges, and away they all went!

Does this look like anybody’s bedroom floor? Times it by 16.

A futuristic monorail glides around Green Team’s city buildings

What’s a medieval world without an authentic, functional windmill?

We were blown away by all of the amazing creations that campers and their team leaders built: several working elevators (with tracks and with pulleys/windlasses); a slowly rotating time travel portal (sadly not actually functional); a crank-powered shooting spaceship; an amusement park ride; drawbridges; a merry-go-round; several demolition machines!

(P.S. For any parents of elementary students wanting a more cost-friendly version of LEGO Mindstorms, I highly recommend LEGO Boost. At about $150, it is a somewhat simplified system, still with sensors, motors, and fully programmable using a block-based system. The only downside is that it does always need a tablet/phone/computer app to be running via Bluetooth to make it work.)

Day 5: Do Over
At this point in the camp, the kids have learned so many different things and have typically gravitated towards one or the other. Some of them think that LED illumination is the coolest thing, and others just can’t get enough of making CAD models online. So on the fifth day, Mr. Meadth and Mr. Eves issued a few more challenges of various sorts. The teams helped put together a welcome sign with their photo on it; they all constructed a wearable accessory lit up with more lights and batteries. Some made hats and funky glasses and others made glowing swords!

The fun keeps coming on Day 5!

Robot City continued to grow in complexity and variety. Some teams incorporated sensors into their robotic systems, using touch triggers and infrared detectors to more accurately control their elevators and bridges.

By the time parents arrived at 12:30, the teams were ready for the final wrap-up. All points were tallied, and the all-girl Green Team took the grand prize, much to their delight!

Parents were delighted to see everything
the kids had accomplished… and that
someone else was handling the cleanup!

Mr. Meadth and Mr. Eves would like to thank all families for making our third Robot City camp such a success! We intend to run this again in 2020 (new ideas are already in the works!), so please spread the word amongst family and friends. You can start by sharing this article with someone who might be interested! And remember, this camp is open to all students, not just those from Providence. We’re always glad to welcome new friends from outside our regular community.

Until next year, may these junior engineers keep on designing and keep on building!

Searching for Solutions: Search and Rescue Robot Challenge

(Our latest blog article comes courtesy of Joshua in the 10th Grade.  Thanks, Josh!)

In the event of an emergency, robots may be called upon to enter into areas which have been devastated by natural disaster. The thirteen students from the Foundations of Engineering II class split up into four groups to build such robots, and testing came after eight weeks of work and dedication!

The original CAD model of the obstacle course, constructed
over several weeks by our indefatigable teaching assistants,
seniors Josh and Claire
The testing included nine phases (any of which could be skipped) all while carrying a payload. The teams would go through two gates of different sizes, over a gravel pit, up onto platforms of varying heights of 50 and 100 mm, push a block with the mass of one kilogram, go across a chasm, and make their way up a 45° incline. At the end of the run, the robot would be required to drop off the payload. The driver for each team would first do this routine while watching from nearby, and then once again using only a first-person camera view.
Davis gets his team’s robot up onto the 50 mm platform with
no worries at all
The first robot to test was the “Trapezoidal Tank”. This robot was built by Nolan, Davis, and Alan. They felt ready for the first trial of the course, but decided to skip the 45° incline. Everything ran smoothly until the payload drop at the very end. They realized something was wrong.

The payload mechanism’s motor came unplugged!

Davis, the driver, thought up an idea. The payload was resting on top of the robot. What if he just flipped the whole robot over? Using the tank’s “tail”, he flipped the robot up onto its end and delivered the payload.

Although not able to climb the full 45 degree slope, with a slight
modification the Trapezoidal Tank was make it at 40 degrees
A moment of pure glory! Davis upends the entire robot and performs
the obligatory victory dance!
On the camera-only run, the course was successfully completed again with only one obstacle skipped.

Caleb taking things in his stride, as the long-legged robot effortlessly
clambers over the gravel pit obstacle
Caleb attempts to steer by camera only–
no easy feat! 
Pushing the one-kilogram block away, the package waiting to be
delivered is clearly seen on the right-hand side of the robot
This complex (and squeaky) maneuver involves a series of
high-torque gymnastic activities

Next up was “Daddy Long Legs,” a robot with motorized wheels attached to extended legs. It was built by Caleb, Sydney, and Zach. Caleb, the driver, slowly completed the run, also skipping the very difficult 45° incline. On the camera-only trial, the robot was not able to place the payload in the designated area.

Anaconda brings its bulk to bear on a one-kilogram block of wood
This monster robot leaps 100 mm platforms with
a single bound!

Next was “Anaconda”, built by Sam P., Isaiah, and Pedro. It’s most notable feature? The robot’s tracks could rotate all the way around to point in the opposite direction. Sam P. took the wheel, and on his first run, he only skipped the smaller gate. On the camera-only run, he made it through the same obstacles without any issues.

James steers the Iron Horse through both gates and up onto
the 100 mm platform
Finally, the “Iron Horse” entered. This robot was built by Sam K., James, Joshua, and Kaitlyn. The design was simple yet effective. However, the extra mechanism they had added to their robot at the last minute broke! It was designed to help them get up onto the two platforms. Fortunately, there was enough power available for it to slowly assist with the obstacle it was built for.
Charging over the gravel pit with a huge ground clearance
Shortly after, that extra mechanism fell off and so did the payload. In a lengthy and complicated series of maneuvers, James used the one-kilogram block to push the payload over into the designated area.
End of the road: the Iron Horse capsizes while trying to free its
jammed package (the small yellow catch was supposed to release
and allow the hinged door to fall)
On the camera-only run, the Iron Horse’s payload wouldn’t release. James used the gravel pit to try to get the payload to come loose, but the robot flipped over. He attempted to flip the robot back over, but it tipped over on its side instead. This run was incomplete.

The lesson to be learned for these four groups? Each problem can be solved in many different ways, but some are more effective than others. In every problem you encounter, consider those many solutions and then choose the most effective one.

When Things Go Wrong, Could You Lend Me a Hand?

There’s a great deal of discussion right now in educational circles about the positive benefits of failure. You don’t have to look far to find TED talks, psychological reviews, and blog articles on why it’s okay–and even beneficial–to fail. Failure, we read, makes us stronger, fights against complacency, and recommits us to our goals. The warnings are shouted loudly: Parents! Don’t shield your kids from failure! Our own faculty member, Carri Svoboda, shared an article earlier this year about why women in particular might be afraid to fail.

The Foundations of Engineering II class in the Providence Engineering Academy were recently given a new project to wrestle with: design and build a robotic prosthetic arm. Using metal motors and controls for the forearm frame, they then had to 3D print a functional palm, fingers, and thumb. No instructions, and nothing off-the-shelf. Oh, and with one more twist–the entire thing was made double size.

James and Zach prepare the Pink Team’s hand

Isaiah and Kaitlyn working on the finishing touches

So what happens when you give a room full of budding engineers a bunch of robotics parts and computers and a 3D printer? Well, for one, a lot of failure. Dead ends and broken components are commonplace. The line of code that worked yesterday doesn’t work today. The team member that needed to design their part in time just doesn’t. Control wires break. Batteries die. Entropy seems to work harder than its usual self.

And that’s okay!

Davis shows Alan his giant metal forearm; the green boxes down
the side are the motors to control the 3D-printed fingers

The teams worked hard for seven weeks. During this time, they also visited PathPoint, a nearby organization dedicated to working with those needing assistive technology–the original inspiration for this robotic limb project. The direct experience with those who daily use technology to overcome their difficulties was very moving.

The whole group visiting PathPoint, non-profit working here in
Santa Barbara with those needing assistive technology

When all was completed, the four teams loaded up into the school vans, and headed over to the San Roque campus. Their giant articulated hands waved a cheery hello to cars driving by, fingers flexing and twitching in eerie mimicry.

Pedro shows the Yellow Team’s code to a
Lower School student

James checks the workings of his pink articulated fingers

The class presented their designs to the 3rd, 4th, 5th, and 6th Grades across two days. On the first day, failure was the name of the game, as every team experienced the frustration of things going wrong. To name just a few of the dozens of problems:

  • A control line connecting a motor to a finger broke or came untied.
  • A stop keeping a finger from bending backward broke away.
  • An elastic band returning the finger to neutral position broke.
  • A remote control, necessary for demonstration, would not “pair” with the onboard computer.
  • Another remote control was left behind in the engineering classroom!
Nolan, chief coding specialist for the
White Team

A myriad of challenges–yes! More importantly, how did the students respond?

  • They switched to manual operation instead of motor-controlled.
  • They took extra time to talk to their elementary-aged guests about 3D printing and robots.
  • They used tape and scrap pieces to rebuild a finger stop.
  • They retied control lines, anchoring them with bolts and washers.
  • They avoided focusing on the problems, and drew their audience’s attention to what was working.
Our 5th Grade teacher, Mrs. Suleiman, shared her highlight of the experience: “Hearing the students talk about the ‘failures’ that happened as they were designing the hands, and watching them deal with problems that occurred during their demonstration.”

Lower School students take a turn wiggling the giant fingers
back and forth with the remote control

The students themselves reflected on this very same idea a few days later:

Pedro: “There will always be failure. Failure is good. You learn from it.”

Zach: “Perhaps it is not our mistakes that are the true failures, but the ways that we handle our mistakes that are.”

Alan: “The point of this isn’t about how many failures we have, but how we deal with them.”

Isaiah: “All this goes to say that every problem has a solution. You just have to be willing to persevere.”

And persevere they did. On the second day of presenting, most of the kinks had been worked out. With smiles on their faces, our 9th and 10th Graders talked at length about their coding and CAD. The elementary students were able to take turns at the controls and wiggle those giant fingers back and forth. What a joy to see older students inspiring the younger ones with warmth and kindness!

Nolan helps our Lower School students
operate the arm

Our closing thoughts come from Sydney (9th Grader), who wrote some powerfully encouraging thoughts for all of us:

“I know that even in my academic journey at Providence, I have failed many times… This seems like the world can end, yet once you rise up and decide to learn from those failures, you really do learn the most… Through the project of making a robotic hand, I understand that failing is normal and is bound to happen at some point… I have learned that I need a team or a group who can help me when I fail. I need to give myself grace when I do fail… I am grateful for this experience and the hand that was our outcome, even if it was losing a few nuts and bolts by the end. Great work, team!”

Summer Camp 2018

It was such a roaring success the first time that we just had to do it all over again! The second annual Providence Engineering Summer Camp finished today, and the brightly lit robot city took wings with our special theme: SPACE. We all know it’s the final frontier, and our fifteen campers interpreted this idea in a multitude of ways. Alien invasion… meteorite shower… rocket launch… solar system buildings… 3D printed rockets and planets… so much fun!

Todd helps his team with some simple geometric designs

High school engineering students Joshua, Todd, Alena, and Sam led the charge each day teams of devoted campers from Providence and the broader community. We also had a good deal of help from Isabela! These excellent engineers taught the campers how to build electronic circuits, program robots, 3D print fantastic creations, and design out-of-this-world architecture. Illuminated buildings towered high above the cityscape as tiny robots darted to and fro. Electrified copper rails ran this way and that carrying power to critical components, with printed sculptures dotting the landscape.

Success! A single 3 V coin battery powers nine blue LEDs…
or is it only eight?
There was no messing around, either—these elementary students learned their stuff! You can ask them what “LED” stands for, and what a “forever loop” might be used for. They know how to build a working switch out of paper and copper foil, and some of them even used their movie-making skills to record short action videos!
The Robot City landscape continues to become
increasingly illuminated
As the days went by, the creations became increasingly complex. First was the skyscraper that was literally taller than Mr. Meadth. Then came the red/orange/green traffic light by the illuminated airstrip. 3D printed costumes were designed (by the campers, of course) for the tiny Ozobots in the shape of cars, rockets, and trains. And—of course—there was the obligatory fiesta of robot dance parties, all happening in perfect synchronization.
A delightful blue flower stands bold and tall
The end of each day came all too quickly. With lots to take home, we hope these happy campers will continue to code, invent architecture, and design circuits all summer long! Enjoy the rest of the photos, and we hope to have as many of you as possible back next year!
The 3D CAD model (computer aided design), becomes—by magic!—
a brightly lit reality
A tall rocket stands beside a crashed alien spacecraft
Our campers working hard to create all manner of new buildings
The tallest skyscraper in the room, complete with embedded
meteorites and emergency beacons
The Copper Rocket throws an eerie light out onto the empty streets

The giant completed city!