Update: Wheelchair Computer Desk Feedback

 Back in February, we posted a blog describing the completion and delivery of our wheelchair computer desk to PathPoint. After a few weeks, we were finally able to get Mr. Meadth and Mr. Gil Addison together with his team to go over the design and get that long-awaited feedback.

Feedback from the end user is critical to the entire design process. For this particular project, the Academy had all sorts of unanswered questions: will the design function as requested? Does the screen angle suit a typical wheelchair user? How convenient is the keyboard position? Is the mechanical motion safe enough for general usage? Would a typical PathPoint resident be able to operate the remote control? What improvements could be made? While we don’t currently plan on producing a Mk II, one project often leads into another and we improve our products by understanding their strengths and weaknesses.

Gil Addison (far right) together with his grateful staff

Mr. Meadth (center) joins in for the camera

Gil met Mr. Meadth together with six of the PathPoint staff members and together they went over the particulars of the design. You can watch the entire footage here, and a summary of design points is also included below.

As we draw this project to a close, thank you to PathPoint for being willing to work with us in an ongoing fashion! May our students always be inspired to use their God-given gifts with training and understanding, and we hope that the PathPoint residents are blessed through this simple gift.

Design Feedback

Screen Angle: Although the older iMac that was tested tended to slip on its hinge, once kept in place, the screen was easily able to tilt downwards to any wheelchair user at a suitable viewing angle.

Gil tests out the seated angle

Standing Height: The PathPoint ambulatory staff members found the maximum standing height to be comfortable and sturdy.

PathPoint staff test the standing height

Motor Function: Although the motor sounds like it is straining to raise the desk, and there is a slight but noticeable bending of the wooden attachment, the motor appears to be able to operate the desk satisfactorily.

Desk Size: The PathPoint team felt that the final desk size was a little smaller than they would have liked; although the keyboard and mouse did fit on it, there was not much room to move the mouse. Possible solutions: use a trackpad instead, attach a larger plywood sheet to that desk, or rebuild that component.

Operability: It is very easy for an ambulatory user to operate, although the small remote with small buttons may be difficult for some users. The desk adjustment at the front might be hard to operate, but it probably doesn’t need to be used often after being set in one position. Possible solutions: rebuild the remote with larger buttons that still trigger the same microswitches, build an app that uses the same remote frequency.

Other Improvements: The iMac base barely fit under the clamp; the wooden piece at the back that gets in the way could be chamfered down. The same wooden piece that flexes slightly could be doubled up. A spherical router bit could carve out a channel in the desk for the keyboard to fit into. The carriage bolts for the rear clamp could be longer to permit a thicker desk.

Architecture Competition 2020

(The following post, written by Anna Beebe, was intended to be published in March—and then COVID-19 happened! Forgive our tardiness… the Architecture Competition was one of the very last things the Providence Engineering Academy did in person this year and it was highly worthwhile!)

The students get ready for the day’s instructions

On Tuesday, March 10th, fourteen Providence Engineering students—our largest group to date—attended a county-wide High School Design Competition hosted by the Architectural Foundation of Santa Barbara. Our students joined approximately 30 other students at 8am at Direct Relief’s global headquarters in Santa Barbara while a parallel section of the competition was offered at the same time at a location in the Santa Ynez valley.

This competition has been held annually for the past 30 years, and Providence students have won awards in the competition in both 2018 and 2019.

Teacher Matt Eves prepared our students incredibly well. For the last three months, class time has been devoted to architectural study. Students have been learning how to use architectural drawing boards with t-squares and triangles, as well as how to draw to scale. Both of these skills were utilized in the competition, as students were engaged in designing floor plans, site plans, and elevation drawings.

On site, students were given a design challenge immediately upon entering the room. Historically, the Architectural Foundation has attempted to choose challenges that connect directly to current architectural challenges in Santa Barbara.

This year, the challenge was to design a “tiny house”—a fully-functional home that is typically less than 600 square feet, with some as small as 65 square feet. You may be familiar with the “tiny homes” that back up to the US101 North near the Salinas exit, one of several tiny-house projects in Santa Barbara born of a recent ordinance authorizing their construction in order to make use of unconventional plots of land.

Students were given a site plan that showed streets and a plot layout and were instructed to design a tiny house on it, and draw-to-scale some details including elevation and floor plan. While the students worked, professional architects circled the room acting as mentors and offering design advice.

Sophomore Kaitlyn Tang said of the competition, “There’s something about designing that is special. Although tasked to build a tiny house, there really was no ceiling to what we could do. It was so amazing to be able to design something from scratch with endless possibilities. I had such a fun experience and time flew by, but I think in the end, we all designed something that we were really proud of.”

Dozens of high schools from around Santa Barbara County
were represented at the design competition
Junior Joshua Frankenfield returned to the competition for his third year, having won past awards. He says of his experience, “I must say that the architecture competition is one of the highlights of the school year for me. The way it is set up gives the students leeway to solve the problem however they wish in the time period given, so long as it operates within the restraints. It is a true engineering experience within the realm of architecture.”

We are incredibly proud of the hard work and creativity our Providence students demonstrated, and are so grateful for the opportunity they had to connect with architects in the city. For those who are interested in studying architecture, this experience will be a wonderful spring-board for their professional future! As sophomore James Loewen put it, “It has been a very fun experience regardless of winning or not!”

A Tour of JPL


(This is the eighth in a series of blog articles written by the Providence Engineering Academy students. Pedro in 11th grade reflects on his experience at the Jet Propulsion Lab in Pasadena on our class field trip earlier this year.)


“The trip was really inspiring way above expectations. I enjoyed the chance to see where they work, and the 2020 rover was a memory I will never forget.”

“It really re-awoke the third grade Nolan in me. The rover around Saturn replica was cool to see, it was a great experience, and I’m so glad I got the opportunity to go.”

These are the words Josh and Nolan stated about our class trip to the Jet Propulsion Laboratory (JPL). JPL was a fun and interesting experience, and in our tour we got to learn and see things that we’ve never seen before.

First off, we saw a video that was amazing to watch. This video showed us the gigantic size of the whole universe and taught us that most of it hasn’t been explored. It also showed some satellites and spacecraft that were launched into space, and we were able to look at smaller scaled models of these around the room.

Our host shows the various scale models of historical space probes

Next, we got to see the control room, which was full of screens and numbers. This is the room where they gather information from every spacecraft, rover, and satellite. It is also the place from which they controlled the landing of the Mars rover, Curiosity, in 2012—which we learned was a really terrifying seven minutes for these hard workers! 

The control center, from which every robotic space mission
has been monitored
Then, we got to see photos from one of the rovers on Mars. These photos had been taken just hours earlier and we got to see them on a screen!

After that, we got to see the construction of the 2020 Mars rover. Amazing! We learned that anyone that is eighteen or under can get their name applied on the 2020 rover.

The rover being constructed inside a “clean room”
Our final stop was the gift shop, which sold “space” ice cream, sweaters, and some cool toys for your kids. Overall, JPL was a fun and really cool experience for all of us.

Space: The Final Frontier

(This is the second in a series of blog articles written by the Providence Engineering Academy students. In the light of our recent trip to Jet Propulsion Laboratory in Pasadena, Ben in 12th Grade describes some of the history and future of space exploration.)

The concept of space travel has captured the public eye since the late 1800s with science fiction. As humans learned to blow things up in a certain direction more effectively, what was once science fiction became science speculation and from there we continued in our search for what lies beyond.

The entire group poses inside the famous JPL facility
On September 25, 2019, the Providence Engineering Academy was given the opportunity to take a glimpse into our country’s efforts to see just what else God has created in our universe at the Jet Propulsion Laboratory in Pasadena. We humans, as stewards of creation, have a special role in discovery and advancement of our world, and this stewardship is taken seriously at JPL. They have produced deep space telescopes, orbital telescopes, weather telescopes, rovers, etc. for this exact purpose.
Our host stands next to the life-size (non-functional!) sister of
the currently active Mars rover, Curiosity
Mankind continues our search for life on other worlds as JPL designs their next Mars rover, set for launch in 2020. This rover is designed to search the soil of Mars for any signs of life. As an engineering student, I am greatly inspired by the efforts that we as stewards make to find out more about our neighboring planets. Scientists are also hoping to research the seas of Europa, one of the largest moons of Jupiter, to see if there is any life below the outer icy shell. Since there are large bodies of water on Europa, many scientists wonder if creatures live there, just as there is sea life on earth.
Our host shares the incredible history of space exploration from
this site, with a scale model of the Cassini probe in the background
Meanwhile, deep-space telescopes have been expanding the radius of what we know. There are upcoming missions for my generation to develop, based on all of the ground-breaking work done by the gifted scientists at JPL and other locations. One such mission is to develop a telescope to photograph other solar systems so that we can see if there are similar planets to Earth in those systems.
We deeply appreciated the enthusiasm and brilliance on display at JPL, and we wait with anticipation for what the future might hold—perhaps we’ll be a part of it!

Field Trip: Surreal Virtual Reality Studio

(The following blog article is first in a new series for this year, where each student in the Advanced Engineering II group is required to write a blog article on a recent field trip or related topic of their choosing. The first article comes from Joshua in 11th Grade.)
We thought space was the final frontier, but we were wrong. There is a new realm out there that is becoming readily available for exploration. Virtual reality is here, and it has been here for a while. Virtual reality, like it or not, is a growing part of world culture. It has grown so much that virtual reality arcades are becoming more and more popular.

The Advanced Engineering II class at Providence, myself included, had the opportunity to go to a new virtual reality arcade in Santa Barbara that is being developed by Mr. Whited. (Our field trip was for testing and educational purposes only, of course!) The studio had its grand opening on Thursday October 10th, and it is an experience fit for everyone, whether you want to have some family fun, a party, or just want to beat your high score that you were so close to beating last time you went. Mr. Meadth drove the group down to the intersection of Haley Street and State Street and we made our way over.

Joshua looks on as Nolan gets settled into his headset, ready for
a trip through the rings of Saturn!

Upon setting our eyes upon the testing site, the whole class was excited. We saw two stations for single-player games, one station for a two-player game, and two stations to host their four-player games. The Advanced Engineering II class was split up into two groups to play the four-player games.

The first game had us embarking on an expedition around Saturn as space rocks flew past. The second tested the fight inside of us as we were sent down an alien-infested river on a raft. Sadly, we had to make it back to school in time for pick-up.

Alex at Surreal Virtual Reality Studio sets up Sam and Pedro
with hand controllers and headset

Reflecting on the experience, Pedro remarked that “it was pretty amazing and fun. It was just a fun experience seeing how technology has improved.” Nolan afterwards said that it “was pretty cool. It was my first time using virtual reality so I didn’t really know what to expect. I thought it was a really fun experience. I also think that virtual reality will be a really useful tool in the future.”

Nolan was right about virtual reality becoming a useful tool, and in actuality it already is one. Virtual reality has some really amazing uses that are only just being made widespread. For example, teachers are able to use Google Cardboard, a cheap virtual reality setup which uses your phone as a screen, to take their students on virtual field trips that they wouldn’t be able to do normally. At the University of Westminster, criminal law professors use virtual reality simulations to teach their students how to hunt for clues and construct a murder case in a realistic scenario. Trade schools are able to use virtual reality to teach their students as well.

Virtual reality used to be a thing of the future. Now it is a thing of the present. It is coming quickly with surging popularity. It isn’t something to be afraid of, especially with all of the great uses for it. Virtual reality is something to be embraced for its dual ability to entertain and to educate.

(Surreal Virtual Reality Studio is open for business at 436 State Street, Unit B, just behind the Craft Ramen restaurant. Their October special pricing is still available, and you can make a reservation on their website. Thank you Mr. Whited for the chance to preview it!)

Field Trip to Peabody Stadium

After many months of trying, the Providence Engineering Academy was finally able to secure a field trip to see… well, a field! Peabody Stadium, an integral part of the sporting complex at Santa Barbara High School for almost 100 years, has been greatly in need of renewal for a range of reasons—regular flooding, surface maintenance, seating capability, ADA compliance—and our engineering students were given a sneak peek at the behind-the-scenes process!
Our own neighborhood! Peabody Stadium (old image) to the
upper left, and Providence School to the lower right
A quick walk across Canon Perdido Street brought the group to the construction trailers, where Mat Gradias from Kruger Bensen Ziemer Architects, Inc. met them and introduced them to some members of the construction and design team. Mat has been involved with the Santa Barbara ACE Mentor Program, which several of our students (Eva, Victor, and Seung) have attended for the past two years.
Mat showed the construction plans, and described to the group some of the challenges facing the team, from sourcing grants to managing city wastewater ducts to preserving the “look and feel” of the local neighborhood. The team’s original completion date was April 2019, but is now projected for the middle of August.
Josh, Gabe, Victor, Ben, Todd, Colby, Eva, Alena, Claire, and
Madison facing north; behind is the new southern grandstand

There’s a lot of mud and dust right now, but over the next few weeks there’ll be seeing bright green artificial turf laid out. Regular flooding issues will be a thing of the past, with clever water management systems in the event of severe rainfall. Seating capacity will be greatly improved, and highly directional lighting and sound seeks to minimize light and noise pollution for the surrounding areas. The state-of-the-art track surface will be the only one of its kind for a hundred miles—a type of high-tech material that is known for producing world records.

The Engineering Academy was very grateful to Mat and the other presenters, and they’re already excited to see the finished product!

When Things Go Wrong, Could You Lend Me a Hand?

There’s a great deal of discussion right now in educational circles about the positive benefits of failure. You don’t have to look far to find TED talks, psychological reviews, and blog articles on why it’s okay–and even beneficial–to fail. Failure, we read, makes us stronger, fights against complacency, and recommits us to our goals. The warnings are shouted loudly: Parents! Don’t shield your kids from failure! Our own faculty member, Carri Svoboda, shared an article earlier this year about why women in particular might be afraid to fail.

The Foundations of Engineering II class in the Providence Engineering Academy were recently given a new project to wrestle with: design and build a robotic prosthetic arm. Using metal motors and controls for the forearm frame, they then had to 3D print a functional palm, fingers, and thumb. No instructions, and nothing off-the-shelf. Oh, and with one more twist–the entire thing was made double size.

James and Zach prepare the Pink Team’s hand

Isaiah and Kaitlyn working on the finishing touches

So what happens when you give a room full of budding engineers a bunch of robotics parts and computers and a 3D printer? Well, for one, a lot of failure. Dead ends and broken components are commonplace. The line of code that worked yesterday doesn’t work today. The team member that needed to design their part in time just doesn’t. Control wires break. Batteries die. Entropy seems to work harder than its usual self.

And that’s okay!

Davis shows Alan his giant metal forearm; the green boxes down
the side are the motors to control the 3D-printed fingers

The teams worked hard for seven weeks. During this time, they also visited PathPoint, a nearby organization dedicated to working with those needing assistive technology–the original inspiration for this robotic limb project. The direct experience with those who daily use technology to overcome their difficulties was very moving.

The whole group visiting PathPoint, non-profit working here in
Santa Barbara with those needing assistive technology

When all was completed, the four teams loaded up into the school vans, and headed over to the San Roque campus. Their giant articulated hands waved a cheery hello to cars driving by, fingers flexing and twitching in eerie mimicry.

Pedro shows the Yellow Team’s code to a
Lower School student

James checks the workings of his pink articulated fingers

The class presented their designs to the 3rd, 4th, 5th, and 6th Grades across two days. On the first day, failure was the name of the game, as every team experienced the frustration of things going wrong. To name just a few of the dozens of problems:

  • A control line connecting a motor to a finger broke or came untied.
  • A stop keeping a finger from bending backward broke away.
  • An elastic band returning the finger to neutral position broke.
  • A remote control, necessary for demonstration, would not “pair” with the onboard computer.
  • Another remote control was left behind in the engineering classroom!
Nolan, chief coding specialist for the
White Team

A myriad of challenges–yes! More importantly, how did the students respond?

  • They switched to manual operation instead of motor-controlled.
  • They took extra time to talk to their elementary-aged guests about 3D printing and robots.
  • They used tape and scrap pieces to rebuild a finger stop.
  • They retied control lines, anchoring them with bolts and washers.
  • They avoided focusing on the problems, and drew their audience’s attention to what was working.
Our 5th Grade teacher, Mrs. Suleiman, shared her highlight of the experience: “Hearing the students talk about the ‘failures’ that happened as they were designing the hands, and watching them deal with problems that occurred during their demonstration.”

Lower School students take a turn wiggling the giant fingers
back and forth with the remote control

The students themselves reflected on this very same idea a few days later:

Pedro: “There will always be failure. Failure is good. You learn from it.”

Zach: “Perhaps it is not our mistakes that are the true failures, but the ways that we handle our mistakes that are.”

Alan: “The point of this isn’t about how many failures we have, but how we deal with them.”

Isaiah: “All this goes to say that every problem has a solution. You just have to be willing to persevere.”

And persevere they did. On the second day of presenting, most of the kinks had been worked out. With smiles on their faces, our 9th and 10th Graders talked at length about their coding and CAD. The elementary students were able to take turns at the controls and wiggle those giant fingers back and forth. What a joy to see older students inspiring the younger ones with warmth and kindness!

Nolan helps our Lower School students
operate the arm

Our closing thoughts come from Sydney (9th Grader), who wrote some powerfully encouraging thoughts for all of us:

“I know that even in my academic journey at Providence, I have failed many times… This seems like the world can end, yet once you rise up and decide to learn from those failures, you really do learn the most… Through the project of making a robotic hand, I understand that failing is normal and is bound to happen at some point… I have learned that I need a team or a group who can help me when I fail. I need to give myself grace when I do fail… I am grateful for this experience and the hand that was our outcome, even if it was losing a few nuts and bolts by the end. Great work, team!”

Homelessness and Architecture

Earlier this year, our Upper School students spent a day of service around Santa Barbara, with a theme of “homelessness”. Students spent time at PATH Santa Barbara, Showers of Blessing, and Food Forward, to name just a few organizations. Our school also has a long history of working with the Santa Barbara Rescue Mission and Habitat for Humanity. So when the time came this year to finish with a major architectural design project, the connection was obvious.

After reviewing some typical architectural projects aimed at alleviating the burden of homelessness, such as the Los Angeles Star Apartments, we decided to pay a visit to those working directly with the homeless. A visit to the Rescue Mission was eye-opening; our host Trinity handed out the hard hats and led us around the Yanonali Street property.

Trinity leading the group around the Rescue Mission’s construction zone

The Rescue Mission was in dire need of renovations, having been built in 1987 for the express purpose of housing and training the homeless of Santa Barbara. After over 30 years of unending community service in that location, the Mission sought to bring their facilities up to date, while still maintaining their daily commitment to receive, feed, and shelter anyone coming through the doors. As such, the project is being carried out in phases.

At the Santa Barbara Rescue Mission; from left to right: Joshua,
Peter, Ben, Todd, Alena, Nolan, Ava, Madison, Sam, Pedro, Caleb,
and Mr. Meadth

The students also took the chance to walk down the street and meet with Jon, the CEO of the local chapter of Habitat for Humanity. Jon showed the group through a typical low-income housing development, describing how successful applicants to the program provide their own “sweat equity” to help meet the cost of a new home. The students were also fascinated by the various technologies used to keep costs down during and after construction: special framing standards, highly insulated rooms, and solar panels.

The team stands with Jon from Habitat for Humanity on their
East Canon Perdido Street location

Back in the classroom, the challenge was issued: design a one-storey building in downtown Santa Barbara for a new Catholic homeless shelter. Constraints were described regarding occupancy, setbacks, and parking. Students were encouraged to consider how the architecture itself might support the intended mission. How can open, plant-filled community spaces promote mental health and serenity? How does a well-designed building give its occupants dignity?

Todd and Ava consider their various design elements, with Todd
on SketchUp and Ava drawing plans by hand

A typical day right now is humming with energy! Ben, Alena, Todd, Caleb, and Josh are hard at work creating CAD models in SketchUp (a free 3D tool used by many architects and product designers). Nolan, Madison, Ava, Peter, and Pedro are drawing scaled floor plans to match the CAD model. Armed with their wits and some architectural rulers, they are carefully tracking the details of corridor widths and parking space sizes. Sam is also building a physical model for his team out of balsa, foamboard, and other various materials. In total, five different designs are in production.

Ben and Nolan working hard to ensure the paper plans match
perfectly with the CAD model; their third teammate Sam (not
pictured) is working on the physical scale model

We’re extra grateful to Trinity from the Rescue Mission, who came by class this week to provide feedback to the student teams, one by one. Her advice was invaluable, as one who already knows firsthand the practical implications of the various design elements.

Pedro explains his floor plan to Trinity during class this week

The Providence Engineering Academy is asking the question: how can we bring our skills and knowledge to bear on a world full of problems and in need of the love of Christ? Through meeting with local homeless people, hearing from the ministries that serve them, and through technical training, we hope to ignite a skillful passion for the world around us.

Reach out to Rod Meadth for questions and comments. Don’t forget to share the word about our incredible summer camp, which also includes architectural themes: Robot City!

Architectural Competition in Santa Ynez

If you had been lurking around the Upper Campus at 6:55 am on Tuesday the 13th of March, braving the rain and stumbling about in the dark, you might just have caught sight of a strange and unusual thing: eight high school students and one teacher loading up into a white van. Wielding scale rulers, plastic triangles, and mechanical pencils, these intrepid adventurers had only two things in mind—the Santa Barbara High School Architectural Competition, and a desire for strong coffee.

Victor, Gabe, and Trevor: together in life, together in architecture!

All grades were represented in the group: Tys (our sole senior); Eva, Gabe, Josh, Trevor, and Victor (juniors); Peter (sophomore); Josh (freshman). They arrived at Santa Ynez Valley Union High School, and quickly found their way to the gymnasium. Along with about 50 other high school students from Dos Pueblos, San Marcos, Santa Ynez, Dunn, St. Joseph’s, Santa Maria, and more, they listened attentively as the design challenge was described.

Josh and Peter read the design brief carefully as the
competition begins

The challenge: to design a new fire station that would be both functional and attractive, having a natural “park-like” feel. Constraints were given as to fire truck bay dimensions, equipment lockers, living quarters requirements. Particular difficulty lay in the small size of the property described. Not to be fazed, the students launched into it with gusto!

This competition has been running annually for the last 27 years, conceived and managed by David Goldstien from the Architectural Foundation of Santa Barbara.  Recent winners have come from Dos Pueblos, Laguna Blanca, St. Joseph’s, and Dunn. This is the first year that Providence has entered the competition; David reached out personally to our school this year to make us aware and extend his invitation.

Tys, Eva, and Josh working hard and enjoying the day!

It was a long day of creating professional-style scale drawings (site plan, floor plans, and elevations), but the students all agreed that the seven hours had flown by, and they could have done with just a little more time! Gabe commented that this was the “the best icebreaker you could do to get into the world of architecture.” Trevor noted that the whole experience “helped us understand how to spend time wisely.”

The entries were judged on the same day by practicing architects, and within 24 hours we received some good news: Josh and Gabe had both placed in the top twelve, and were asked to present their designs to the final panel at the Alisal Guest Ranch!

Gabe describes the nuances of his plans to the judges
Josh prepares for his own spiel

In the end, the competition was won by Vivian from Dunn School in Los Olivos. Vivian has placed amongst the winners in years past, and so was well prepared to take the lead. However, our congratulations go out to all of our eight students, and especially Josh and Gabe, who represented Providence so well in their very first attempt. A supervising teacher from Santa Maria commented on the difference that our students exhibit: her students have commented that they want “the Providence confidence!”

Josh and Gabe proudly stand for a photo at the Alisal

The Providence Engineering Academy teaches many different aspects of design and engineering, in its pursuit to “inspire and equip students to find creative solutions to the world’s problems through mathematics, science, and engineering, as imitators of a creative God.” Architecture is but one of those many exciting elements, and we congratulate all of our participants for their creativity and hard work. For more information on our engineering programs, contact Rod Meadth or download the application packet from the sidebar of this website.

In the Steps of Orville and Wilbur

The Advanced Engineering II group has a unique and challenging task in front of them. In fact, it is quite possible that none of the students has ever undertaken something quite like this: a group project that lasts from September to March—designing and building a model glider!

The students have been hard at work learning the fundamentals of aerodynamics, as applied to conventional aircraft. They understand Bernoulli’s principle, the momentum shift theory of lift, what induced drag is, and why most modern aircraft have those little turned-up ends on their wings. They know the value of the theoretical lift curve slope, and how much lift an uncambered airfoil produces at a zero angle of attack, and they can check it all in a virtual wind tunnel test! Impressed yet?!

Luke (11th) and Kylie (12th) consult their extensive course notes
as they work on the detailed design spreadsheet

Divided up into four teams, the students have just put the finishing touches on their complex design spreadsheet, which describes in precise detail the various features of the glider they are going to build. Each glider will be thrown from the top of the science lab building onto our field, carrying a single (unboiled!) egg to safety as far downfield as possible. The plane that successfully flies the farthest and lands safely wins!

Tys (12th), Victor (11th), Colby (11th), and Mikaela (12th) happily
nearing the end of their design calculations after several weeks

The students will be using a variety of materials and techniques; we are currently amassing a stockpile of carbon fiber tubes, balsa wood pieces, tissue paper, cellophane, lead weights, aluminum wire, and other bits and pieces. The teams are creating CAD models of their wing cross-sections, intending to 3D print them in the coming weeks. Most of the gliders are about three feet across the wingspan, about two feet long, and weigh a bit more than half a pound. (By the way, all of our work is done in metric units, to be in keeping with international physics standards!)

In order to get a real hands-on feel for the work, the group also took a special visit up to the Santa Ynez Airport, where they were shown a variety of gliders and powered aircraft. This was the perfect chance to connect theory to practice, and it no doubt helped inspire the students as they move into the manufacturing phase.

Josh and Gabe look at the cockpit
of an older glider

Dave and Colby, employees of the airport, graciously showed us around the couple of dozen light aircraft sitting on the runway, answering student questions about wing design, gliding techniques, and the pilot license process.

Megan and Caleb dreaming big as they stand by another one of
the gliders
The students look on as Colby describes the sleek and elegant
Cirrus light aircraft


As more airplanes took off and landed around them, the students got up close views of a shiny Cirrus, many older Cessnas, and an unusual-looking Long-EZ. Colby described to us the great thrill of flying, being in perfect solitude up in the sky; he is working towards his powered pilot license.

Is it a spaceship of some sort? The Long-EZ design is not
recommended for the students to imitate for their glider design

The class’s six seniors from left to right: Tys, Mikaela, Caleb, Megan,
Aaron, and Kylie; our guide Colby on the right
With plenty to fill their heads about glide paths, turbulent flow, night navigation, wing construction, parachutes, and fuel pods, the students took one final pose on an aircraft they were allowed to sit in! Thanks very much to Dave and Colby and all of the crew up at Santa Ynez—perhaps we’ll see you again sometime soon! Airport Day is coming up on Saturday, May 20th, and all are welcome.