Collaboration with the Physical Education Department

(The fourth in our student blog series comes from Nolan in 11th Grade, and gives the final update on a project that was begun last year.)

Last year, the focus of the Advanced Engineering I group (juniors and seniors) of the Providence Engineering Academy was statics, or the branch of physics associated with objects at rest. As a way to explore this topic, the members of the Engineering Academy collaborated with the Providence Physical Education Department. Their goal was to create versatile wooden boxes that could function in many different ways: an obstacle course, a balance beam, or a step-up box, for example. In this way, the engineering students created a system that would not only benefit the P.E. program, but would also help them learn more about statics, since the structure would have to be able to withstand the use of the junior highers (not breaking or sliding on the grass when jumped on, while having multiple uses).

The first box shown in a virtual assembly

The second box shown translucent, interior strength wall visible

This first step of this project was to create paper models of the boxes, to see how everything would fit together. After Mr. Meadth, the director of the Engineering Academy, approved the designs, the team shifted to using an online program called Onshape. Onshape is a design tool used to create realistic models of objects. This CAD technique allowed the budding engineers to visualize their designs of the boxes further and make adjustments where needed. Once the “CADing” was complete, it was time to start producing and assembling the actual boxes.
Mr. Meadth checks the fit of the first two pieces of one box, as
students look on
The students wrestle with the heavy pieces, sliding them into place
Incorporating the “box joint” technique (resembling a three-dimensional puzzle, used for strength), the two large boxes were finally completed after lots of hard work from last year’s juniors and seniors. Each box comprised approximately nine pieces, weighed about 120 pounds, and had volumes of 80 and 48 cubic feet, respectively. Another fun touch added to these boxes was a grid of four inch squares cut into sides of the boxes, allowing them to be connected together with beams. These boxes are oddly shaped, one like a cube cut along the diagonal and the other like a cube with a rectangular chunk missing, which only adds to their versatility.
An almost completed box, missing two faces and the inner wall
Fast-forward three months: two
amazing boxes just as planned!
Since these boxes were created last year, they have had much use from the junior highers. Mr. Mitchell, the P.E. teacher, says that he is “very grateful that the Engineering Academy did this,” and that “these boxes really enhance the fitness pursuits and the program as a whole.” Judging by the frequency of use and Mr. Mitchell’s gratefulness, this project was a resounding success. Great work, Providence Engineering Academy!
A grateful Mr. Mitchell urges his students on as they create
innovative workout routines

Inspiration from Michele Weslander-Quaid

(The next in our student blog series comes from Madison in 12th Grade.)
Earlier this semester, our Providence Engineering Academy had the honor of hearing from Michele Weslander-Quaid. She shared a brief description of her life growing up with many challenges and gave us the charge that we are never too young to lead or change the world. 
Despite some disadvantages in her background, Michele was able to accomplish incredible things, which she attributes largely to her mother’s sacrificial parenting sending her to a Santa Barbara Christian School. She went on to be the youngest Chief Engineer and the second female Chief Engineer in the history of her company, one of the youngest Senior Executives in U.S. Government history, and Google CTO for Public Sector and Innovation Evangelist.
Michele shares the wisdom she has learned over the years
Michele went on to tell us that too often people are judged by the circumstances into which they were born. She encouraged us that even if we have rough backgrounds, we should not let our disadvantages hold us back from our dreams for the future or let past experiences decide our fate. 
One of the powerful quotes she mentioned was by Charles R. Swindoll saying: “Life is 10% what happens to you and 90% how you react to it.” Life is all about the decisions we make based on events that have happened to us, not the events themselves. We can choose to let our past experiences or upbringing lead us to a never-ending cycle for generations to come, or we can stand up against those tendencies and do great things. We are in control of our own destiny.
The entire Academy poses with our guest!
A couple of years ago Michele spoke to us and gave a similar charge that we are never too young to change the world. It was that presentation that encouraged me to pursue a particular future for myself: to enter into one of the military academies as an engineer. 
I am still actively working today to reach that goal because of her. Michele is such an inspirational speaker and I hope that other students—or even adults—will realize that the difficulties of their past need not define their future.
Thank you again, Michele, for inspiring us with your life story.

Space: The Final Frontier

(This is the second in a series of blog articles written by the Providence Engineering Academy students. In the light of our recent trip to Jet Propulsion Laboratory in Pasadena, Ben in 12th Grade describes some of the history and future of space exploration.)

The concept of space travel has captured the public eye since the late 1800s with science fiction. As humans learned to blow things up in a certain direction more effectively, what was once science fiction became science speculation and from there we continued in our search for what lies beyond.

The entire group poses inside the famous JPL facility
On September 25, 2019, the Providence Engineering Academy was given the opportunity to take a glimpse into our country’s efforts to see just what else God has created in our universe at the Jet Propulsion Laboratory in Pasadena. We humans, as stewards of creation, have a special role in discovery and advancement of our world, and this stewardship is taken seriously at JPL. They have produced deep space telescopes, orbital telescopes, weather telescopes, rovers, etc. for this exact purpose.
Our host stands next to the life-size (non-functional!) sister of
the currently active Mars rover, Curiosity
Mankind continues our search for life on other worlds as JPL designs their next Mars rover, set for launch in 2020. This rover is designed to search the soil of Mars for any signs of life. As an engineering student, I am greatly inspired by the efforts that we as stewards make to find out more about our neighboring planets. Scientists are also hoping to research the seas of Europa, one of the largest moons of Jupiter, to see if there is any life below the outer icy shell. Since there are large bodies of water on Europa, many scientists wonder if creatures live there, just as there is sea life on earth.
Our host shares the incredible history of space exploration from
this site, with a scale model of the Cassini probe in the background
Meanwhile, deep-space telescopes have been expanding the radius of what we know. There are upcoming missions for my generation to develop, based on all of the ground-breaking work done by the gifted scientists at JPL and other locations. One such mission is to develop a telescope to photograph other solar systems so that we can see if there are similar planets to Earth in those systems.
We deeply appreciated the enthusiasm and brilliance on display at JPL, and we wait with anticipation for what the future might hold—perhaps we’ll be a part of it!

Field Trip: Surreal Virtual Reality Studio

(The following blog article is first in a new series for this year, where each student in the Advanced Engineering II group is required to write a blog article on a recent field trip or related topic of their choosing. The first article comes from Joshua in 11th Grade.)
We thought space was the final frontier, but we were wrong. There is a new realm out there that is becoming readily available for exploration. Virtual reality is here, and it has been here for a while. Virtual reality, like it or not, is a growing part of world culture. It has grown so much that virtual reality arcades are becoming more and more popular.

The Advanced Engineering II class at Providence, myself included, had the opportunity to go to a new virtual reality arcade in Santa Barbara that is being developed by Mr. Whited. (Our field trip was for testing and educational purposes only, of course!) The studio had its grand opening on Thursday October 10th, and it is an experience fit for everyone, whether you want to have some family fun, a party, or just want to beat your high score that you were so close to beating last time you went. Mr. Meadth drove the group down to the intersection of Haley Street and State Street and we made our way over.

Joshua looks on as Nolan gets settled into his headset, ready for
a trip through the rings of Saturn!

Upon setting our eyes upon the testing site, the whole class was excited. We saw two stations for single-player games, one station for a two-player game, and two stations to host their four-player games. The Advanced Engineering II class was split up into two groups to play the four-player games.

The first game had us embarking on an expedition around Saturn as space rocks flew past. The second tested the fight inside of us as we were sent down an alien-infested river on a raft. Sadly, we had to make it back to school in time for pick-up.

Alex at Surreal Virtual Reality Studio sets up Sam and Pedro
with hand controllers and headset

Reflecting on the experience, Pedro remarked that “it was pretty amazing and fun. It was just a fun experience seeing how technology has improved.” Nolan afterwards said that it “was pretty cool. It was my first time using virtual reality so I didn’t really know what to expect. I thought it was a really fun experience. I also think that virtual reality will be a really useful tool in the future.”

Nolan was right about virtual reality becoming a useful tool, and in actuality it already is one. Virtual reality has some really amazing uses that are only just being made widespread. For example, teachers are able to use Google Cardboard, a cheap virtual reality setup which uses your phone as a screen, to take their students on virtual field trips that they wouldn’t be able to do normally. At the University of Westminster, criminal law professors use virtual reality simulations to teach their students how to hunt for clues and construct a murder case in a realistic scenario. Trade schools are able to use virtual reality to teach their students as well.

Virtual reality used to be a thing of the future. Now it is a thing of the present. It is coming quickly with surging popularity. It isn’t something to be afraid of, especially with all of the great uses for it. Virtual reality is something to be embraced for its dual ability to entertain and to educate.

(Surreal Virtual Reality Studio is open for business at 436 State Street, Unit B, just behind the Craft Ramen restaurant. Their October special pricing is still available, and you can make a reservation on their website. Thank you Mr. Whited for the chance to preview it!)

Summer Camp 2019

This summer, the Providence Engineering Academy once again hosted the very special Robot City summer camp. With assistance from four capable high school engineering students (Alena, Davis, Pedro, and Zach), Mr. Eves and Mr. Meadth put on an unforgettable experience!

(Please note that all photos in this article have been selected to avoid showing camper faces, since not all students are from Providence with a photo release. Apologies if you’re looking for your loved one’s smiling face!)

Day 1: Architecture
After breaking into four teams, each group selected the theme for their quadrant of Robot City. The Green Team chose Time Travel, the Blue Team settled on a Medieval Castle, the Yellow Team laid out an Alien Attack on the Beach, and Red Team was Future City. A quick lesson of folding geometric nets, and all campers from 3rd to 7th Grade were ready to build!

The skyline emerges! A colorful mess of card and tape!

Red Team’s skyscraper went up and up and up, and needed to be
tied down with guy ropes!
Blue Team’s “Nice No-Trap Castle”. Should we believe them?

With inspiring challenges like “Tallest Tower” and “Most Colorful”, each team worked hard to lay out their cities. Skyscrapers rose up six feet into the air, zip lines were strung out, and spaces carefully divided out.

Day 2: CAD and 3D Printing
It might sound complex, but physically printing CAD (computer-aided design) models is something within the reach of any elementary student! Mr. Meadth taught the campers how to use Tinkercad, a free in-browser design tool created by AutoDesk. Designers can use simple shapes such as cylinders, cones, spheres, and prisms to create more complex models, such as houses and rocketships and characters.

Two of our campers work on their CAD models (Owen’s model
on the right is shown in detail below)

This is a great tool to get kids thinking in terms of linear dimensions, negative and positive space, perspective, volume, and it’s just plain creative fun! Here are a couple of examples of what the kids came up with. We also had spaceships, tanks, flying cars, and castles. Wow!

Once created (the models above took the students less than an hour to build), the designs were sent to the 3D printer. At a small enough print size, most models were done in about an hour, in a range of colors. Of course, after the camp the students got to keep whatever they have printed!

It’s just as addictive as watching TV, but at the end of the program
there’s actually something to show for. Thanks, Raise3D!

Day 3: Electrification
Always a favorite! Mr. Meadth gave a quick lesson on simple circuits, explaining terms such as “LED”, “voltage”, “series”, and “parallel”. Each team was given a supply of copper tape, coin batteries, and LEDs, and shown how to connect them together to power their city. It wasn’t long before the entire room was lit up with red, blue, orange, white, and green!

A lovely beach paradise in the shadow of the skyscrapers
(the tidal wave was added later)

The Green Team’s time travel zone included some helpful signs
(because time travel can be confusing)

A scale replica of the Golden Gate Bridge, courtesy of Abigail

All teams took up the extra challenges as well, building working paper switches, including both series and parallel circuits, and working to match their lighting arrangements to their theme. Blue Team created “laser traps” for their medieval castle, and Green Team strung out a long neatly-lit road to mark out their different time travel zones. Billboard were illuminated and “stained-glass” windows lit from the inside.

Mr. Eves works on the Blue Team’s medieval quadrant
LEDs don’t come through well in photos, but you get the idea!

When parents arrived for pickup on Wednesday, the lights went out, and the party started!

Day 4: LEGO Robotics
What’s a Robot City without robots? This year, Mr. Meadth and Mr. Eves guided the campers on how to incorporate LEGO Mindstorms robotics sets. Rather than creating robotic systems that would move around (and potentially destroy delicate buildings and circuits!), the teams focused on stationary mechanical systems. Mr. Meadth gave some lessons on essential mechanical systems (bevelled gears, gear reductions, universal joints, cams and cranks, etc.), issued some fun challenges, and away they all went!

Does this look like anybody’s bedroom floor? Times it by 16.

A futuristic monorail glides around Green Team’s city buildings

What’s a medieval world without an authentic, functional windmill?

We were blown away by all of the amazing creations that campers and their team leaders built: several working elevators (with tracks and with pulleys/windlasses); a slowly rotating time travel portal (sadly not actually functional); a crank-powered shooting spaceship; an amusement park ride; drawbridges; a merry-go-round; several demolition machines!

(P.S. For any parents of elementary students wanting a more cost-friendly version of LEGO Mindstorms, I highly recommend LEGO Boost. At about $150, it is a somewhat simplified system, still with sensors, motors, and fully programmable using a block-based system. The only downside is that it does always need a tablet/phone/computer app to be running via Bluetooth to make it work.)

Day 5: Do Over
At this point in the camp, the kids have learned so many different things and have typically gravitated towards one or the other. Some of them think that LED illumination is the coolest thing, and others just can’t get enough of making CAD models online. So on the fifth day, Mr. Meadth and Mr. Eves issued a few more challenges of various sorts. The teams helped put together a welcome sign with their photo on it; they all constructed a wearable accessory lit up with more lights and batteries. Some made hats and funky glasses and others made glowing swords!

The fun keeps coming on Day 5!

Robot City continued to grow in complexity and variety. Some teams incorporated sensors into their robotic systems, using touch triggers and infrared detectors to more accurately control their elevators and bridges.

By the time parents arrived at 12:30, the teams were ready for the final wrap-up. All points were tallied, and the all-girl Green Team took the grand prize, much to their delight!

Parents were delighted to see everything
the kids had accomplished… and that
someone else was handling the cleanup!

Mr. Meadth and Mr. Eves would like to thank all families for making our third Robot City camp such a success! We intend to run this again in 2020 (new ideas are already in the works!), so please spread the word amongst family and friends. You can start by sharing this article with someone who might be interested! And remember, this camp is open to all students, not just those from Providence. We’re always glad to welcome new friends from outside our regular community.

Until next year, may these junior engineers keep on designing and keep on building!

Searching for Solutions: Search and Rescue Robot Challenge

(Our latest blog article comes courtesy of Joshua in the 10th Grade.  Thanks, Josh!)

In the event of an emergency, robots may be called upon to enter into areas which have been devastated by natural disaster. The thirteen students from the Foundations of Engineering II class split up into four groups to build such robots, and testing came after eight weeks of work and dedication!

The original CAD model of the obstacle course, constructed
over several weeks by our indefatigable teaching assistants,
seniors Josh and Claire
The testing included nine phases (any of which could be skipped) all while carrying a payload. The teams would go through two gates of different sizes, over a gravel pit, up onto platforms of varying heights of 50 and 100 mm, push a block with the mass of one kilogram, go across a chasm, and make their way up a 45° incline. At the end of the run, the robot would be required to drop off the payload. The driver for each team would first do this routine while watching from nearby, and then once again using only a first-person camera view.
Davis gets his team’s robot up onto the 50 mm platform with
no worries at all
The first robot to test was the “Trapezoidal Tank”. This robot was built by Nolan, Davis, and Alan. They felt ready for the first trial of the course, but decided to skip the 45° incline. Everything ran smoothly until the payload drop at the very end. They realized something was wrong.

The payload mechanism’s motor came unplugged!

Davis, the driver, thought up an idea. The payload was resting on top of the robot. What if he just flipped the whole robot over? Using the tank’s “tail”, he flipped the robot up onto its end and delivered the payload.

Although not able to climb the full 45 degree slope, with a slight
modification the Trapezoidal Tank was make it at 40 degrees
A moment of pure glory! Davis upends the entire robot and performs
the obligatory victory dance!
On the camera-only run, the course was successfully completed again with only one obstacle skipped.

Caleb taking things in his stride, as the long-legged robot effortlessly
clambers over the gravel pit obstacle
Caleb attempts to steer by camera only–
no easy feat! 
Pushing the one-kilogram block away, the package waiting to be
delivered is clearly seen on the right-hand side of the robot
This complex (and squeaky) maneuver involves a series of
high-torque gymnastic activities

Next up was “Daddy Long Legs,” a robot with motorized wheels attached to extended legs. It was built by Caleb, Sydney, and Zach. Caleb, the driver, slowly completed the run, also skipping the very difficult 45° incline. On the camera-only trial, the robot was not able to place the payload in the designated area.

Anaconda brings its bulk to bear on a one-kilogram block of wood
This monster robot leaps 100 mm platforms with
a single bound!

Next was “Anaconda”, built by Sam P., Isaiah, and Pedro. It’s most notable feature? The robot’s tracks could rotate all the way around to point in the opposite direction. Sam P. took the wheel, and on his first run, he only skipped the smaller gate. On the camera-only run, he made it through the same obstacles without any issues.

James steers the Iron Horse through both gates and up onto
the 100 mm platform
Finally, the “Iron Horse” entered. This robot was built by Sam K., James, Joshua, and Kaitlyn. The design was simple yet effective. However, the extra mechanism they had added to their robot at the last minute broke! It was designed to help them get up onto the two platforms. Fortunately, there was enough power available for it to slowly assist with the obstacle it was built for.
Charging over the gravel pit with a huge ground clearance
Shortly after, that extra mechanism fell off and so did the payload. In a lengthy and complicated series of maneuvers, James used the one-kilogram block to push the payload over into the designated area.
End of the road: the Iron Horse capsizes while trying to free its
jammed package (the small yellow catch was supposed to release
and allow the hinged door to fall)
On the camera-only run, the Iron Horse’s payload wouldn’t release. James used the gravel pit to try to get the payload to come loose, but the robot flipped over. He attempted to flip the robot back over, but it tipped over on its side instead. This run was incomplete.

The lesson to be learned for these four groups? Each problem can be solved in many different ways, but some are more effective than others. In every problem you encounter, consider those many solutions and then choose the most effective one.

Field Trip to Peabody Stadium

After many months of trying, the Providence Engineering Academy was finally able to secure a field trip to see… well, a field! Peabody Stadium, an integral part of the sporting complex at Santa Barbara High School for almost 100 years, has been greatly in need of renewal for a range of reasons—regular flooding, surface maintenance, seating capability, ADA compliance—and our engineering students were given a sneak peek at the behind-the-scenes process!
Our own neighborhood! Peabody Stadium (old image) to the
upper left, and Providence School to the lower right
A quick walk across Canon Perdido Street brought the group to the construction trailers, where Mat Gradias from Kruger Bensen Ziemer Architects, Inc. met them and introduced them to some members of the construction and design team. Mat has been involved with the Santa Barbara ACE Mentor Program, which several of our students (Eva, Victor, and Seung) have attended for the past two years.
Mat showed the construction plans, and described to the group some of the challenges facing the team, from sourcing grants to managing city wastewater ducts to preserving the “look and feel” of the local neighborhood. The team’s original completion date was April 2019, but is now projected for the middle of August.
Josh, Gabe, Victor, Ben, Todd, Colby, Eva, Alena, Claire, and
Madison facing north; behind is the new southern grandstand

There’s a lot of mud and dust right now, but over the next few weeks there’ll be seeing bright green artificial turf laid out. Regular flooding issues will be a thing of the past, with clever water management systems in the event of severe rainfall. Seating capacity will be greatly improved, and highly directional lighting and sound seeks to minimize light and noise pollution for the surrounding areas. The state-of-the-art track surface will be the only one of its kind for a hundred miles—a type of high-tech material that is known for producing world records.

The Engineering Academy was very grateful to Mat and the other presenters, and they’re already excited to see the finished product!

Search and Rescue Robot Photos: Josh Guinto

One of the strengths of our Engineering Academy is the opportunity to assign older students to act as teaching assistants for the younger group. This year, we are privileged to have Josh and Claire, both seniors, working behind the scenes day in and day out. Josh and Claire take care of so many important things, freeing me up (Mr. Meadth) to focus on teaching and assisting students.
Following on from the highly successful robotic arm project, our current robotics challenge is to design and build a search and rescue robot. This idea has been widely explored by many universities and private companies. We are proud to have four separate teams, each developing a unique solution for a robot that can navigate a defined obstacle course and deliver a survival package to a person on the other end. Such a robot might be used in an earthquake scenario.
No more talk from me! Let me simply share some excellent photos taken by Josh (thanks once again!) We’ll send out an update once this project is completed, so stay posted.
Sam and Pedro arrange the motors around a differential gearbox

Zach, Sydney, and Caleb working on some very secret plans!

Sam, Pedro, and Isaiah can’t wait to add tracks to their creation!

Nolan and Alan looking for bugs in the program

Sydney gears up for safety!

Sam compares his custom 3D-printed pentagonal wheels as
James looks on

Kaitlyn and Josh hard at work writing lines of code

Davis completes some highly necessary modifications to his
team’s tracked robot

Mr. Meadth undertakes repairs to one of Zach’s electric motors

James reattaches the front wheels again

Alan considers his 3D-printed component: a rotating “jack” to
tilt their robot up and down

Gabe Farhadian: Honorable Mention

It’s always a delight to see one of our seniors finish up with a personal best. On the court, in the classroom, and in the community, we love to celebrate special accomplishments. This past week, Engineering Academy member Gabe Farhadian did just that!

Gabe Farhadian: Honorable Mention

For the second time, Providence School sent a group of students to the High School Design Competition put on by the Architectural Foundation of Santa Barbara. The seven students—Gabe, Eva, Seung, Joshua, James, Sam, and Zach—drove with Mr. Meadth up to Direct Relief‘s headquarters in Goleta (a gorgeous modern building in and of itself, if any extra inspiration was needed!). Armed to the teeth with T-squares, triangles, architectural scale rules, and custom-built drawing boards, the enthusiastic students listened carefully to the instructions for a particularly unique challenge.

The competition organizers gave everyone a large scale map of the State Street Theatre District, and described how they would need to redesign part of Victoria Street to become a pedestrian paseo, complete with apartments, public transport connections, and landscape gardening. The idea for this competition came from actual professional charrettes that took place in Santa Barbara not long ago, and is in keeping with possible future plans for that area.

All seven students took to the challenge with gusto. Those who participated last year already knew that six hours to work would not be enough, so they charged in and started drawing. Only a combination of creativity and technical drawing skill could succeed in the task, and we’d like to think our Providence Engineering students have a good measure of both!

Gabe’s complete set of drawings: a site map of the Theatre District,
a floor plan of an apartment, and various other details

The results came in the next day, and Gabe was listed as one of the top twelve finalists! (Both he and Joshua achieved this same honor last year, and had presented their designs to a panel of judges at the Alisal Guest Ranch in Santa Ynez.) This year, Gabe would head out to Dunn School in Los Olivos to talk through his design with the panel of experts.

Gabe (right) stands proudly with the top five

Gabe was first in line to present, with his family standing proudly by (Gabe’s mother, Katherine, is a local landscape architect). At the close of the event, he and one other student from Dunn School were awarded an honorable mention alongside the winners, who came from Laguna Blanca, Dos Pueblos, and Santa Ynez. Well done!
In the 2019-2020 school year, the younger section of the Providence Engineering Academy will spend a significant part of their time on architectural studies. Drawing to scale in plan and elevation, finding creative solutions in teams and as individuals, and using CAD software to represent ideas—there’s so much to look forward to as we seek to “inspire and equip” students to act as “imitators of a creative God.”

When Things Go Wrong, Could You Lend Me a Hand?

There’s a great deal of discussion right now in educational circles about the positive benefits of failure. You don’t have to look far to find TED talks, psychological reviews, and blog articles on why it’s okay–and even beneficial–to fail. Failure, we read, makes us stronger, fights against complacency, and recommits us to our goals. The warnings are shouted loudly: Parents! Don’t shield your kids from failure! Our own faculty member, Carri Svoboda, shared an article earlier this year about why women in particular might be afraid to fail.

The Foundations of Engineering II class in the Providence Engineering Academy were recently given a new project to wrestle with: design and build a robotic prosthetic arm. Using metal motors and controls for the forearm frame, they then had to 3D print a functional palm, fingers, and thumb. No instructions, and nothing off-the-shelf. Oh, and with one more twist–the entire thing was made double size.

James and Zach prepare the Pink Team’s hand

Isaiah and Kaitlyn working on the finishing touches

So what happens when you give a room full of budding engineers a bunch of robotics parts and computers and a 3D printer? Well, for one, a lot of failure. Dead ends and broken components are commonplace. The line of code that worked yesterday doesn’t work today. The team member that needed to design their part in time just doesn’t. Control wires break. Batteries die. Entropy seems to work harder than its usual self.

And that’s okay!

Davis shows Alan his giant metal forearm; the green boxes down
the side are the motors to control the 3D-printed fingers

The teams worked hard for seven weeks. During this time, they also visited PathPoint, a nearby organization dedicated to working with those needing assistive technology–the original inspiration for this robotic limb project. The direct experience with those who daily use technology to overcome their difficulties was very moving.

The whole group visiting PathPoint, non-profit working here in
Santa Barbara with those needing assistive technology

When all was completed, the four teams loaded up into the school vans, and headed over to the San Roque campus. Their giant articulated hands waved a cheery hello to cars driving by, fingers flexing and twitching in eerie mimicry.

Pedro shows the Yellow Team’s code to a
Lower School student

James checks the workings of his pink articulated fingers

The class presented their designs to the 3rd, 4th, 5th, and 6th Grades across two days. On the first day, failure was the name of the game, as every team experienced the frustration of things going wrong. To name just a few of the dozens of problems:

  • A control line connecting a motor to a finger broke or came untied.
  • A stop keeping a finger from bending backward broke away.
  • An elastic band returning the finger to neutral position broke.
  • A remote control, necessary for demonstration, would not “pair” with the onboard computer.
  • Another remote control was left behind in the engineering classroom!
Nolan, chief coding specialist for the
White Team

A myriad of challenges–yes! More importantly, how did the students respond?

  • They switched to manual operation instead of motor-controlled.
  • They took extra time to talk to their elementary-aged guests about 3D printing and robots.
  • They used tape and scrap pieces to rebuild a finger stop.
  • They retied control lines, anchoring them with bolts and washers.
  • They avoided focusing on the problems, and drew their audience’s attention to what was working.
Our 5th Grade teacher, Mrs. Suleiman, shared her highlight of the experience: “Hearing the students talk about the ‘failures’ that happened as they were designing the hands, and watching them deal with problems that occurred during their demonstration.”

Lower School students take a turn wiggling the giant fingers
back and forth with the remote control

The students themselves reflected on this very same idea a few days later:

Pedro: “There will always be failure. Failure is good. You learn from it.”

Zach: “Perhaps it is not our mistakes that are the true failures, but the ways that we handle our mistakes that are.”

Alan: “The point of this isn’t about how many failures we have, but how we deal with them.”

Isaiah: “All this goes to say that every problem has a solution. You just have to be willing to persevere.”

And persevere they did. On the second day of presenting, most of the kinks had been worked out. With smiles on their faces, our 9th and 10th Graders talked at length about their coding and CAD. The elementary students were able to take turns at the controls and wiggle those giant fingers back and forth. What a joy to see older students inspiring the younger ones with warmth and kindness!

Nolan helps our Lower School students
operate the arm

Our closing thoughts come from Sydney (9th Grader), who wrote some powerfully encouraging thoughts for all of us:

“I know that even in my academic journey at Providence, I have failed many times… This seems like the world can end, yet once you rise up and decide to learn from those failures, you really do learn the most… Through the project of making a robotic hand, I understand that failing is normal and is bound to happen at some point… I have learned that I need a team or a group who can help me when I fail. I need to give myself grace when I do fail… I am grateful for this experience and the hand that was our outcome, even if it was losing a few nuts and bolts by the end. Great work, team!”